Week of 9/17

From Physiki
(Difference between revisions)
Jump to: navigation, search
(New page: {{mathematica|filename=Resonance.nb|title=amplitude and phase spectrum of a single resonance.}} '''9/21/07: More on the Fabry-Perot etalon''' <math>E_t = (E_0 t^2) e^{i \omega L/c} + ...)
 
 
Line 24: Line 24:
  
 
{{mathematica|filename=Fabryperot.nb|title=Amplitude spectrum of a Fabry-Perot etalon}}
 
{{mathematica|filename=Fabryperot.nb|title=Amplitude spectrum of a Fabry-Perot etalon}}
 +
 +
 +
{{PDF|filename=Twooscillators.pdf|title=how matrices arise in the coupled oscillator problem}}

Latest revision as of 15:47, 21 September 2007

Mathematica.png Download amplitude and phase spectrum of a single resonance.


9/21/07: More on the Fabry-Perot etalon


E_t = (E_0 t^2) e^{i \omega L/c} + r^2 (E_0 t^2) e^{i \omega 3L/c}  + r^4 (E_0 t^2) e^{i \omega 5L/c} .... \,

or

E_t = (E_0 t^2) e^{i \omega L/c}\left[ 1 + r^2  e^{i \omega 2L/c}  + r^4  e^{i \omega 4L/c} ...\right]

Hence

E_t = (E_0 t^2) e^{i \omega L/c} \frac{ 1 - r^2m e^{i \omega 2mL/c}} {1 - r^2m e^{i \omega 2L/c}}

Take the limit as the number of bounces goes to infinity, then take | Et | 2 and We get:

I_t/I_i = \frac{1}{1+ K \sin^2(L \omega/c)}

where K = 2r / (1 − r)2 and r is the reflectivity of the mirror.

For more details see the tutorial on spectroscopy and interferometry

Mathematica.png Download Amplitude spectrum of a Fabry-Perot etalon


Pdf.png Download how matrices arise in the coupled oscillator problem
Personal tools
Namespaces
Variants
Actions
Navigation
Toolbox