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Figure 1.10: Two masses coupled by a spring and attached to walls.

This splitting of the degenerate frequency by an external magnetic
field is called the Zeeman effect, after its discoverer Pieter Zeeman
was born in May 1865, at Zonnemaire, a small village in the isle of
Schouwen, Zeeland, The Netherlands. Zeeman was a student of the
great physicists Onnes and Lorentz in Leyden. He was awarded the
Nobel Prize in Physics in 1902. Zeeman succeeded Van der Waals

(another Nobel prize winner) as professor and director of the Physics Laboratory in
Amsterdam in 1908. In 1923 a new laboratory was built for Zeeman that included a
quarter-million kilogram block of concrete for vibration free measurements.

We could continue the analysis by plugging these frequencies back into the amplitude
equations 1.1.35. As an exercise, do this and show that the motion of the electron
(and hence the electric field) is circularly polarized in the direction perpendicular to the
magnetic field.

1.2 Two Coupled Masses

With only one mass and one spring, the range of motion is somewhat limited. There is
only one characteristic frequency ω2

0 = k

m
so in the absence of damping, the transient

(unforced) motions are all of the form cos(ω0t + ∆).

Now let us consider a slightly more general kind of oscillatory motion. Figure 1.10 shows
two masses (m1 and m2) connected to fixed walls with springs k1 and k3 and connected
to one another by a spring k2. To derive the equations of motion, let’s focus attention
on one mass at a time. We know that for any given mass, say mi (whose displacement
from equilibrium we label xi) it must be that

miẍi = Fi (1.2.1)

where Fi is the total force acting on the ith mass. No matter how many springs and
masses we have in the system, the force applied to a given mass must be transmitted
by the two springs it is connected to. And the force each of these springs transmits is
governed by the extent to which the spring is compressed or extended.
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Referring to Figure 1.10, spring 1 can only be compressed or extended if mass 1 is
displaced from its equilibrium. Therefore the force applied to m1 from k1 must be −k1x1,
just as before. Now, spring 2 is compressed or stretched depending on whether x1 − x2

is positive or not. For instance, suppose both masses are displaced to the right (positive
xi) with mass 1 being displaced more than mass 2. Then spring 2 is compressed relative
to its equilibrium length and the force on mass 1 will in the negative x direction so as to
restore the mass to its equilibrium position. Similarly, suppose both masses are displaced
to the right, but now with mass 2 displaced more than mass 1, corresponding to spring 2
being stretched. This should result in a force on mass 1 in the positive x direction since
the mass is being pulled away from its equilibrium position. So the proper expression of
Hooke’s law in any case is

m1ẍ1 = −k1x1 − k2(x1 − x2). (1.2.2)

And similarly for mass 2
m2ẍ2 = −k3x2 − k2(x2 − x1). (1.2.3)

These are the general equations of motion for a two mass/three spring system. Let us
simplify the calculations by assuming that both masses and all three springs are the
same. Then we have

ẍ1 = −
k

m
x1 −

k

m
(x1 − x2)

= −ω2
0x1 − ω2

0(x1 − x2)

= −2ω2
0x1 + ω2

0x2. (1.2.4)

and

ẍ2 = −
k

m
x2 −

k

m
(x2 − x1)

= −ω2
0x2 − ω2

0(x2 − x1)

= −2ω2
0x2 + ω2

0x1. (1.2.5)

Assuming trial solutions of the form

x1 = Aeiωt (1.2.6)

x2 = Beiωt (1.2.7)

we see that

(−ω2 + 2ω2
0)A = ω2

0B (1.2.8)

(−ω2 + 2ω2
0)B = ω2

0A. (1.2.9)

Substituting one into the other we get

A =
ω2

0

2ω2
0 − ω2

B, (1.2.10)
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and therefore

(2ω2
0 − ω2)B =

ω4
0

2ω2
0 − ω2

B. (1.2.11)

This gives an equation for ω2

(2ω2
0 − ω2)2 = ω4

0. (1.2.12)

There are two solutions of this equation, corresponding to ±ω2
0 when we take the square

root. If we choose the plus sign, then

2ω2
0 − ω2 = ω2

0 ⇒ ω2 = ω2
0. (1.2.13)

On the other hand, if we choose the minus sign, then

2ω2
0 − ω2 = −ω2

0 ⇒ ω2 = 3ω2
0. (1.2.14)

We have discovered an important fact: spring systems with two masses have two char-
acteristic frequencies. We will refer to the frequency ω2 = 3ω2

0 as “fast” and ω2 = ω2
0

as “slow”. Of course these are relative terms. Now that we have the frequencies we can
investigate the amplitude. First, since

A =
ω2

0

2ω2
0 − ω2

B, (1.2.15)

we have for the slow mode (ω = ω0)

A = B, (1.2.16)

which corresponds to the two masses moving in phase with the same amplitude. On the
other hand, for the fast mode

A = −B. (1.2.17)

For this mode, the amplitudes of the two mass’ oscillation are the same, but they are
out of phase. These two motions are easy to picture. The slow mode corresponds to
both masses moving together, back and forth, as in Figure 1.11 (bottom). The fast mode
corresponds to the two masses oscillating out of phase as in Figure 1.11 (top).

1.2.1 A Matrix Appears

There is a nice way to simplify the notation of the previous section and to introduce a
powerful mathematical at the same time. Let’s put the two displacements together into a
vector. Define a vector u with two components, the displacements of the first and second
mass:

u =

[

Aeiωt

Beiωt

]

= eiωt

[

A

B

]

. (1.2.18)
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Figure 1.11: With two coupled masses there are two characteristic frequencies, one “slow”
(bottom) and one “fast” (top).

We’ve already seen that we can multiply any solution by a constant and still get a
solution, so we might as well take A and B to be equal to 1. So for the slow mode we
have

u = eiω0t

[

1
1

]

, (1.2.19)

while for the fast mode we have

u = ei
√

3ω0t

[

1
−1

]

. (1.2.20)

Notice that the amplitude part of the two modes

[

1
1

]

and

[

1
−1

]

(1.2.21)

are orthogonal. That means that the dot product of the two vectors is zero: 1 × 1 +
1 × (−1) = 0.6 As we will see in our discussion of linear algebra, this means that the
two vectors point at right angles to one another. This orthogonality is an absolutely
fundamental property of the natural modes of vibration of linear mechanical systems.

6
[

1
1

]

·

[

1
−1

]

≡ [1, 1]

[

1
−1

]

= 1 · 1 − 1 · 1 = 0.
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1.2.2 Matrices for two degrees of freedom

The equations of motion are (see Figure 1.10):

m1ẍ1 + k1x1 + k2(x1 − x2) = 0 (1.2.22)

m2ẍ2 + k3x2 + k2(x2 − x1) = 0. (1.2.23)

We can write these in matrix form as follows.
[

m1 0
0 m2

] [

ẍ1

ẍ2

]

+

[

k1 + k2 −k2

−k2 k2 + k3

] [

x1

x2

]

=

[

0
0

]

. (1.2.24)

Or, defining a mass matrix

M =

[

m1 0
0 m2

]

(1.2.25)

and a “stiffness” matrix

K =

[

k1 + k2 −k2

−k2 k2 + k3

]

(1.2.26)

we can write the matrix equation as

M ü + Ku = 0 (1.2.27)

where

u ≡

[

x1

x2

]

. (1.2.28)

This is much cleaner than writing out all the components and has the additional advan-
tage that we can add more masses/springs without changing the equations, we just have
to incorporate the additional terms into the definition of M and K.

Notice that the mass matrix is always invertible since it’s diagonal and all the masses
are presumably nonzero. Therefore

M−1 =

[

m1
−1 0

0 m2
−1

]

. (1.2.29)

So we can also write the equations of motion as

ü + M−1Ku = 0. (1.2.30)

And it is easy to see that

M−1K =

[

k1+k2

m1

−k2

m1

−k2

m2

k2+k3

m2

]

.


