Week of 9/11

(Difference between revisions)
Jump to: navigation, search
Line 18: Line 18:
  
 
<math>E_t = (E_0 t^2) e^{i \omega L/c} \frac{ 1 - r^2m e^{i \omega 2mL/c}} {1 - r^2m e^{i \omega 2L/c}}</math>
 
<math>E_t = (E_0 t^2) e^{i \omega L/c} \frac{ 1 - r^2m e^{i \omega 2mL/c}} {1 - r^2m e^{i \omega 2L/c}}</math>
 +
 +
Take the limit as the number of bounces goes to infinity, then take <math>|E_t|^2</math>  and We get:
 +
 +
<math>I_t/I_i = \frac{1}{1+ K \sin^2(L \omega/c)}</math>

Revision as of 15:10, 13 September 2006

Here is a great resource for mathematics and Mathematica: Mathworld, the on-line free mathematics encyclopedia


Mathematica.png Download amplitude and phase spectrum of a single resonance.
Pdf.png Download 9/11/06 lecture notes

9/13/06: More on the Fabry-Perot etalon


E_t = (E_0 t^2) e^{i \omega L/c} + r^2 (E_0 t^2) e^{i \omega 3L/c}  + r^4 (E_0 t^2) e^{i \omega 5L/c} .... \,

or

E_t = (E_0 t^2) e^{i \omega L/c}\left[ 1 + r^2  e^{i \omega 2L/c}  + r^4  e^{i \omega 4L/c} ...\right]

Hence

E_t = (E_0 t^2) e^{i \omega L/c} \frac{ 1 - r^2m e^{i \omega 2mL/c}} {1 - r^2m e^{i \omega 2L/c}}

Take the limit as the number of bounces goes to infinity, then take | Et | 2 and We get:

I_t/I_i = \frac{1}{1+ K \sin^2(L \omega/c)}

Personal tools
Namespaces
Variants
Actions
Navigation
Toolbox