Week of 1/21/08

From Physiki
(Difference between revisions)
Jump to: navigation, search
(New page: [http://mathworld.wolfram.com/HermitianInnerProduct.html Definition of complex (Hermitian) inner product] <math><u+v,w>==<u,w>+<v,w></math> <math><u,v+w>==<u,v>+<u,w></math> <math><\alp...)
 
 
(19 intermediate revisions by one user not shown)
Line 1: Line 1:
 
[http://mathworld.wolfram.com/HermitianInnerProduct.html Definition of complex (Hermitian) inner product]
 
[http://mathworld.wolfram.com/HermitianInnerProduct.html Definition of complex (Hermitian) inner product]
  
<math><u+v,w>==<u,w>+<v,w></math>
 
  
<math><u,v+w>==<u,v>+<u,w></math>
+
It's a matter of convention that the anti-linear term is the second one in the inner product:
  
<math><\alpha u,v> == \alpha<u,v></math>
+
<math> \langle u+v,w \rangle \equiv \langle u,w \rangle + \langle v,w \rangle </math>
  
<math><u,\alpha v>==\alpha^* <u,v></math>
+
<math> \langle u,v+w \rangle  \equiv \langle u,v \rangle + \langle u,w \rangle </math>
  
<math> <u,v>==<v,u> ^* </math>
+
<math> \langle \alpha u,v \rangle  \equiv \alpha \langle u,v \rangle </math>
  
<math> <u,u>>=0,</math> with equality only if <math>u==0</math>
+
<math> \langle u,\alpha v \rangle \equiv \alpha^* \langle u,v \rangle </math>
 +
 
 +
<math> \langle u,v \rangle  \equiv \langle v,u \rangle ^* </math>
 +
 
 +
<math> \langle u,u \rangle  = 0, </math> with equality only if <math>u \equiv 0</math>
  
 
The basic example is the form
 
The basic example is the form
  
<math>h(z,w)==\sum z_i w^* _i</math>
+
<math>h(z,w) \equiv \sum z_i w^* _i</math>
 +
 
 +
However, Griffiths uses a different convention with the complex conjugate on the first term:  cf page 94.  So, I will change mine to conform to his.
 +
 
 +
 
 +
 
 +
 
 +
'''NB''' if <math>z = x + I y</math>, then <math>z^* z = (x - I y)(x + I y) = x^2 + y^2 = z z^*</math>
 +
 
 +
 
 +
{{Mathematica|filename=Superposition.nb|title=Animation of the superposition of two eigenstates for a 1D string}}
 +
 
 +
 
 +
{{PDF|filename=1-21-08.pdf|title=Lecture notes 1/21/08.  Sep. of Variables of TDSE.  Eigenstates. Stationary states.}}
 +
 
 +
 
 +
{{PDF|filename=1-23-08.pdf|title=Lecture notes 1/23/08.  Review of Hermitian matrices/operators.  Particle in an infinite square well.}}
 +
 
 +
 
 +
{{Mathematica|filename=Particleinbox.nb|title=evolution of a gaussian particle in a box}}
 +
 
 +
 
 +
{{Mathematica|filename=Griffiths_example2.2.nb|title=Mathematica version of Griffiths analytic example 2.2}}
 +
 
 +
{{PDF|filename=1-25-08.pdf|title=Lecture notes 1/25/08.  Review of integration by parts.  Stationary states.  Fourier superposition.  Completeness and orthogonality of eigencuntions of Hermitian operators.  Example 2.2 in book.  Quantum harmonic oscillator}}
 +
 
 +
 
 +
[http://eve.physics.ox.ac.uk/Personal/artur/Keble/Quanta/Applets/quantum/deepwellmain.html very nice applet illustrating the dynamics of a deep well]

Latest revision as of 17:53, 25 January 2008

Definition of complex (Hermitian) inner product


It's a matter of convention that the anti-linear term is the second one in the inner product:

 \langle u+v,w \rangle \equiv \langle u,w \rangle + \langle v,w \rangle

 \langle u,v+w \rangle  \equiv \langle u,v \rangle + \langle u,w \rangle

 \langle \alpha u,v \rangle  \equiv \alpha \langle u,v \rangle

 \langle u,\alpha v \rangle \equiv \alpha^* \langle u,v \rangle

 \langle u,v \rangle  \equiv \langle v,u \rangle ^*

 \langle u,u \rangle  = 0, with equality only if u \equiv 0

The basic example is the form

h(z,w) \equiv \sum z_i w^* _i

However, Griffiths uses a different convention with the complex conjugate on the first term: cf page 94. So, I will change mine to conform to his.



NB if z = x + Iy, then z * z = (xIy)(x + Iy) = x2 + y2 = zz *


Mathematica.png Download Animation of the superposition of two eigenstates for a 1D string


Pdf.png Download Lecture notes 1/21/08. Sep. of Variables of TDSE. Eigenstates. Stationary states.


Pdf.png Download Lecture notes 1/23/08. Review of Hermitian matrices/operators. Particle in an infinite square well.


Mathematica.png Download evolution of a gaussian particle in a box


Mathematica.png Download Mathematica version of Griffiths analytic example 2.2
Pdf.png Download Lecture notes 1/25/08. Review of integration by parts. Stationary states. Fourier superposition. Completeness and orthogonality of eigencuntions of Hermitian operators. Example 2.2 in book. Quantum harmonic oscillator


very nice applet illustrating the dynamics of a deep well

Personal tools
Namespaces
Variants
Actions
Navigation
Toolbox