Stable Manifold Theorem

(Difference between revisions)
Jump to: navigation, search
(New page: {{Start Hierarchy|link=Main Page|title=Main Page}} {{Hierarchy Item|link=Bill:Lee|title=Bill:Lee}} {{Hierarchy Item|link=Mathematics|title=Mathematics}} {{End Hierarchy}} Let $E$ be an op...)
 
Line 3: Line 3:
 
{{Hierarchy Item|link=Mathematics|title=Mathematics}}
 
{{Hierarchy Item|link=Mathematics|title=Mathematics}}
 
{{End Hierarchy}}
 
{{End Hierarchy}}
 
Let $E$ be an open subset of $\mathbb{R}^n$ containing the origin, let
 
$f\in C^1(E)$, and let $\phi_t$ be the flow of the nonlinear system $x'=f(x)$.
 
 
Suppose that $f(x_0)=0$ and that $Df(x_0)$ has $k$ eigenvalues with negative real part and $n-k$ eigenvalues with positive real part. Then there exists a $k$-dimensional differentiable manifold $S$ tangent to the stable subspace $E^S$ of the linear system $x'=Df(x)x$ at $x_0$ such that for all $t\geq 0$, $\phi_t(S)\subset S$ and for all $y\in S$,
 
\[
 
\lim_{t\to\infty}\phi_t(y)=x_0
 
\]
 
and there exists an $n-k$ dimensional differentiable manifold $U$ tangent to the unstable subspace $E^U$ of $x'=Df(x)x$ at $x_0$ such that for all
 
$t\leq 0$, $\phi_t(U)\subset U$ and for all $y\in U$,
 
\[
 
\lim_{t\to -\infty}\phi_t(y)=x_0.
 
\]
 

Revision as of 03:38, 28 May 2008

Main Page > Bill:Lee > Mathematics
Personal tools
Namespaces
Variants
Actions
Navigation
Toolbox