Stable Manifold Theorem

From Physiki
Jump to: navigation, search
Main Page > Bill:Lee > Mathematics

Let E be an open subset of \mathbb{R}^{n}, which contains the origin, let \textbf{f}\in C^{1}(E), and let φt be the flow of the nonliear system \dot{\textbf{x}} = \textbf{f}(\textbf{x}). Suppose \textbf{f}(\textbf{0})=\textbf{0} and that D\textbf{f}(\textbf{0}) has k eigenvalues with negative real part and nk eigenvalues with positive real part. Then there exists a kdimensional differentiable manifold S tangent to the sable subspace Es of the linear system \dot{\textbf{x}} =\textbf{Ax} at \textbf{0}such that for all t\geq 0, \phi_{t}(S) \sub S and for all \textbf{x}_{0} \in S, \lim_{t\to\infty} \phi_{t}(\textbf{x}_{0}) = \textbf{0}; and there exists an nk dimensional differentiable manifold U tangent to the unstable subspace Euof the linear system at \textbf{0} such that for all t\leq 0, \phi_{t}(U)\sub U and for all \textbf{x}_{0}\in U, \lim_{t\to -\infty} \phi_{t}(\textbf{x}_{0})=\textbf{0}


References

Differential Equations and Dynamical Systems : Lawrence Perko, page 109, theorem 2, third edition

Personal tools
Namespaces
Variants
Actions
Navigation
Toolbox