Week of 1/21/08

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
 
[http://mathworld.wolfram.com/HermitianInnerProduct.html Definition of complex (Hermitian) inner product]
 
[http://mathworld.wolfram.com/HermitianInnerProduct.html Definition of complex (Hermitian) inner product]
 +
 +
 +
It's a matter of convention that the anti-linear term is the second one in the inner product:
  
 
<math> \langle u+v,w \rangle \equiv \langle u,w \rangle + \langle v,w \rangle </math>
 
<math> \langle u+v,w \rangle \equiv \langle u,w \rangle + \langle v,w \rangle </math>
Line 16: Line 19:
  
 
<math>h(z,w) \equiv \sum z_i w^* _i</math>
 
<math>h(z,w) \equiv \sum z_i w^* _i</math>
 +
 +
NB if <math>z = x + I y</math>, then <math>z^* z = (x - I y)(x + I y) = x^2 + y^2 = z z^*</math>

Revision as of 15:37, 21 January 2008

Definition of complex (Hermitian) inner product


It's a matter of convention that the anti-linear term is the second one in the inner product:

 \langle u+v,w \rangle \equiv \langle u,w \rangle + \langle v,w \rangle

 \langle u,v+w \rangle  \equiv \langle u,v \rangle + \langle u,w \rangle

 \langle \alpha u,v \rangle  \equiv \alpha \langle u,v \rangle

 \langle u,\alpha v \rangle \equiv \alpha^* \langle u,v \rangle

 \langle u,v \rangle  \equiv \langle v,u \rangle ^*

 \langle u,u \rangle  = 0, with equality only if u \equiv 0

The basic example is the form

h(z,w) \equiv \sum z_i w^* _i

NB if z = x + Iy, then z * z = (xIy)(x + Iy) = x2 + y2 = zz *

Personal tools
Namespaces
Variants
Actions
Navigation
Toolbox