Intermediate Mechanics:Central Force Motion

(Difference between revisions)
Jump to: navigation, search
 
Line 4: Line 4:
  
 
<math>u = \frac{1}{r}</math>
 
<math>u = \frac{1}{r}</math>
 +
 +
==Central Force Orbits==
 +
<math>
 +
\frac{\alpha}{r} = 1 + \epsilon \cos \theta
 +
</math>
 +
 +
<math>
 +
\epsilon = \sqrt{1 + \frac{2 E L^2}{m K^2}}
 +
</math>
 +
 +
{| border="1" cellpadding="5" cellspacing="0"
 +
|+'''Central Force Motion Orbits'''
 +
!<math>\epsilon</math> value
 +
!Orbit Type
 +
!Energy Value
 +
|-
 +
|<math>\epsilon = 0 </math>
 +
| Circle
 +
|
 +
|-
 +
|<math>0 < \epsilon < 1 </math>
 +
| Ellipse
 +
|<math>E < 0 </math>
 +
|-
 +
|<math>\epsilon = 1 </math>
 +
| Parabola
 +
|<math>E = 0 </math>
 +
|-
 +
|<math>\epsilon > 1 </math>
 +
| Hyperbola
 +
|<math>E > 0 </math>
 +
|}

Revision as of 18:19, 4 November 2005

Second coolest equation ever (T&M 8.21):

\frac{\partial u}{\partial \dot{\theta}} + u = -\frac{\mu r^2}{l^2}F(r)

u = \frac{1}{r}

Central Force Orbits


\frac{\alpha}{r} = 1 + \epsilon \cos \theta


\epsilon = \sqrt{1 + \frac{2 E L^2}{m K^2}}

Central Force Motion Orbits
ε value Orbit Type Energy Value
ε = 0 Circle
0 < ε < 1 Ellipse E < 0
ε = 1 Parabola E = 0
ε > 1 Hyperbola E > 0
Personal tools
Namespaces
Variants
Actions
Navigation
Toolbox