Exam 2, more harmonic oscillators

From Physiki
(Difference between revisions)
Jump to: navigation, search
 
(20 intermediate revisions by one user not shown)
Line 1: Line 1:
 +
===test 2===
 +
 +
* problem 1
 +
 
<math> \frac{- \hbar ^2}{2m} \frac{d^2}{dx^2} \psi(x) = E \psi(x) </math>
 
<math> \frac{- \hbar ^2}{2m} \frac{d^2}{dx^2} \psi(x) = E \psi(x) </math>
  
Line 4: Line 8:
  
 
Inside the well we should expect plane wave solutions:
 
Inside the well we should expect plane wave solutions:
 +
 
<math>\psi(x) = A e^{i k x} + B e^{-ikx} \ </math>
 
<math>\psi(x) = A e^{i k x} + B e^{-ikx} \ </math>
 +
 +
Where <math> k^2 = \frac{2m}{\hbar ^2} E \ </math>
  
 
Applying the BC this gives:
 
Applying the BC this gives:
Line 40: Line 47:
 
So we have two families of solutions:
 
So we have two families of solutions:
  
<math> \psi(x) = A \left(e^{i k x} + e^{-ikx} \right) = A \cos( \frac{2 \pi (n-1/2)}{a} x)  \ </math>
+
<math> \psi(x) = A \left(e^{i k x} + e^{-ikx} \right) = A \cos \left( \frac{2 \pi (n-1/2)}{a} x \right)  \ </math>
 +
 
 +
 
 +
<math> \psi(x) = B \left(e^{i k x} - e^{-ikx} \right) = B \sin \left(\frac{2 \pi n}{a} x \right)  \ </math>
 +
 
 +
 
 +
The cosine states are even (have even parity), the sine states are odd (have odd parity)
 +
 
 +
Now since <math> k^2 = \frac{2m}{\hbar ^2} E \ </math> we have
 +
 
 +
<math> E_n = \frac{\hbar^2}{2m} \left( \frac{2}{a} \right) ^2 (2 n \pi)^2  = \xi 4(n-1/2)^2  \ </math>
 +
for the odd parity states and
 +
 
 +
 
 +
<math> E_n = \frac{\hbar^2}{2m} \left(\frac{2}{a} \right)^2 (2 (n- 1/2) \pi)^2  = \xi 4 n^2 \ </math>
 +
for the even parity states.
 +
 
 +
 
 +
In numerical order these are:
 +
 
 +
 
 +
<math> \xi  \times \{ 1, 4, 9, 16, ... \}  </math>
 +
 
 +
 
 +
* problem 5
 +
 
 +
<math> [x,p_x] \ </math> is an operator equation.  By definition it is:
 +
<math> (x p_x - p_x x) \ </math>.  In order to work this out it is helpful to apply the operator to a test function.
 +
 
 +
<math> [x,p_x] f(x) = (x p_x - p_x x)f(x) = (x (-i \hbar d/dx)) f(x) - ((-i \hbar d/dx) x) f(x) </math>
 +
<math> = -i \hbar \left( x \prime{f} - (x \prime{f} - f) \right) = i \hbar f  </math>
 +
 
 +
 
  
  
<math> \psi(x) = B \left(e^{i k x} - e^{-ikx} \right) = B \sin( \frac{2 \pi n}{a} x)  \ </math>
+
[[more on harmonic oscillators]]

Latest revision as of 16:20, 29 March 2006

test 2

  • problem 1

 \frac{- \hbar ^2}{2m} \frac{d^2}{dx^2} \psi(x) = E \psi(x)

 \psi(-a/2) = \psi(a/2) = 0 \

Inside the well we should expect plane wave solutions:

\psi(x) = A e^{i k x} + B e^{-ikx} \

Where  k^2 = \frac{2m}{\hbar ^2} E \

Applying the BC this gives:

 A e^{-ika/2} + B e^{ika/2} = 0\

 A e^{ika/2} + B e^{-ika/2} = 0\

At this point you have two equatins and two unknowns. I don't care how you solve them. Here is one way. Add the two equations to get:

 2A \cos(ka/2) + 2B \cos(ka/2) = 0 \

now subtract to get:

 2iA \sin(ka/2) - 2iB \sin(ka/2) = 0\

These are nice since we can factor out the common sine and cosine terms:

(A+B) \cos(ka/2) = 0 \

(A-B) \sin(ka/2) = 0 \


There are only two ways we can satisfy both equations simultaneously. If A=B then the second equatino is taken care of, but then A+B cannot = 0, so we have to insist that \cos(ka/2) = 0 \ . This requires

 ka/2 = (n-1/2) \pi  \

On the other hand, if we choose A = -B, then the first equation is automatically satisfied and then we must insist that \sin(ka/2) = 0 \ . This requires

 ka/2 = n \pi \

So we have two families of solutions:

 \psi(x) = A \left(e^{i k x} + e^{-ikx} \right) = A \cos \left( \frac{2 \pi (n-1/2)}{a} x \right)   \


 \psi(x) = B \left(e^{i k x} - e^{-ikx} \right) = B \sin \left(\frac{2 \pi n}{a} x \right)   \


The cosine states are even (have even parity), the sine states are odd (have odd parity)

Now since  k^2 = \frac{2m}{\hbar ^2} E \ we have

 E_n = \frac{\hbar^2}{2m} \left( \frac{2}{a} \right) ^2 (2 n \pi)^2  = \xi 4(n-1/2)^2  \ for the odd parity states and


 E_n = \frac{\hbar^2}{2m} \left(\frac{2}{a} \right)^2 (2 (n- 1/2) \pi)^2  = \xi 4 n^2 \ for the even parity states.


In numerical order these are:


 \xi  \times \{ 1, 4, 9, 16, ... \}


  • problem 5

 [x,p_x] \ is an operator equation. By definition it is:  (x p_x - p_x x) \ . In order to work this out it is helpful to apply the operator to a test function.

 [x,p_x] f(x) = (x p_x - p_x x)f(x) = (x (-i \hbar d/dx)) f(x) - ((-i \hbar d/dx) x) f(x)  = -i \hbar \left( x \prime{f} - (x \prime{f} - f) \right) = i \hbar f



more on harmonic oscillators

Personal tools
Namespaces
Variants
Actions
Navigation
Toolbox