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Figure 60-1 Cars entering and leaving a segment of roadway.

If there are no entrances nor exits on this road, then the number of cars
between x = a and x = b might still change in time. The number decreases
due to cars leaving the region at x = b, and the number increases as a result
of cars entering the region at x == q. Assuming that no cars are created or
destroyed in between, then the changes in the number of cars result from
crossings at x = g and x = b only. If cars are flowing at the rate of 300 cars
per hour at x = a, but flowing at the rate of 275 cars per hour at x = b, then
clearly the number of cars between x = a and x = b is increasing by 25 cars
per hour. We can generalize this result to situations in which the number of
cars crossing each boundary (the traffic flow g(a, t) and ¢(b, t)) is not constant
in time. The rate of change of the number of cars, dN/dt, equals the number
per unit time crossing at x = a (moving to the right) minus the number of
cars per unit time crossing (again moving to the right) at x = b, or
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since the number of cars per unit time is the flow g(x, ?).

Perhaps this derivation of this important result was not clear to some of
you. An alternate derivation of this result follows. The difference in number

of cars between times ¢ + Az and ¢, N(t + At) — N(), equals the number.

crossing at x = a between ¢t + Af and ¢, which for A¢ small is approximately
g(a, t) At, minus the number crossing at x = b between ¢ + At and ¢, which
for At small is approximately g(b, f)At. Thus,

N(@ 4 A — N(®) = At(g(a, t) — q(b, 1)).

Dividing by At and taking the limit as A — 0 again yields equation 60.2. We
improve this last derivation by eliminating the need for using an approxima-
tion. Consider the difference between the number of cars in the region at
t = t, and ¢ = ¢, (these times do not need to be near each other). An exact
expression is needed for the number of cars crossing at x = b between
t = t, and £ = ¢,. Since g(b, ¢) is the number crossing at x == b per unit time,

then ._‘ ; q(b, ©) dt is the number crossing at x = b between ¢ = t, and t= t.
to

In the approximate derivation, ¢ = ¢, was near ¢ = ¢, and this integral was
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approximated by At g(b, t,). However, without an approximation

N(t) — N@to) = |

1
Divide this expression by #, — ¢, and take the limit as ¢, tends to #,. Equiva-
lently, (but slightly more elegantly) take the derivative with respect to ¢,.
Since 7, does not depend on ¢, (they are two independent times), we obtain
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From the Fundamental Theorem of Calculus (the theorem that implies that
the derivative of the integral of f(x) is f(x) itself), it follows that
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“ala,nd— [" a0 dt = [ aa ) — atb, ) a.

Since ¢, could be any arbitrary time, ¢, is replaced in notation by ¢, and thus
the previously stated result equation 60.2 is rederived.

Combining equations 60.1 and 60.2, yields

mh p(x, 1) dx = q(a, 1) — q(b, 1). (60.3)

This equation expresses the fact that changes in the number of cars are due
only to the flow across the boundary. No cars are created or destroyed; the
number of cars is conserved. This does not mean the number of cars between

x = a and x = b is constant (if that were true then (d/dt) _; plx,t)dx =0 or

q(a, 1) = q(b, 1)). Equation 60.3 is called a conservation law in integral form or,
more concisely, an integral conservation law. This law expresses a property of
traffic over a finite length of roadway a <'x < b.
As an example, consider an extremely long highway which we model by
a highway of infinite length. Let us assume that the flow of cars approaches
zero as x approaches both + oo,
lim g(x,t) =0.
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-From equation.60.3, it follows that

WL p(x, 1) dx = 0.
Integrating this yields

%x p(x, t) dx = constant,
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