Solutions of scalar wave equation

- $2^{\text {nd }}$ order PDE: $\frac{\partial^{2}}{\partial z^{2}} \psi(z, t)-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \psi(z, t)=0$
- Assume separable solution

$$
\psi(z, t)=f(z) g(t)
$$

- 2 solutions for $\mathrm{f}(\mathrm{z}), \mathrm{g}(\mathrm{t})$
- Full solution is a linear combination of both solutions

$$
\psi(z, t)=f(z) g(t)=\left(A_{1} \cos k z+A_{2} \sin k z\right)\left(B_{1} \cos \omega t+B_{2} \sin \omega t\right)
$$

- Equivalent representation:
$\psi(z, t)=A_{1} \cos \left(k z+\omega t+\phi_{1}\right)+A_{2} \cos \left(k z-\omega t+\phi_{2}\right)$
forward propagating + backward propagating waves
- Complex (phasor) representation:
$\psi(z, t)=\operatorname{Re}\left[a e^{i(k z-\omega t+\phi)}\right] \quad$ or $\quad \psi(z, t)=\operatorname{Re}\left[A e^{i(k z-\omega t)}\right]$
Here A is complex, includes phase

Maxwell's Equations to wave eqn

- The induced polarization, \mathbf{P}, contains the effect of the medium:

$$
\begin{array}{ll}
\vec{\nabla} \cdot \mathbf{E}=0 & \vec{\nabla} \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\
\vec{\nabla} \cdot \mathbf{B}=0 & \vec{\nabla} \times \mathbf{B}=\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}+\mu_{0} \frac{\partial \mathbf{P}}{\partial t}
\end{array}
$$

Take the curl:

$$
\vec{\nabla} \times(\vec{\nabla} \times \mathbf{E})=-\frac{\partial}{\partial t} \vec{\nabla} \times \mathbf{B}=-\frac{\partial}{\partial t}\left(\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}+\mu_{0} \frac{\partial \mathbf{P}}{\partial t}\right)
$$

Use the vector ID:

$$
\begin{aligned}
& \mathbf{A} \times(\mathbf{B} \times \mathbf{C})=\mathbf{B}(\mathbf{A} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B}) \\
& \vec{\nabla} \times(\vec{\nabla} \times \mathbf{E})=\vec{\nabla}(\vec{\nabla} \cdot \mathbf{E})-(\vec{\nabla} \cdot \vec{\nabla}) \mathbf{E}=-\vec{\nabla}^{2} \mathbf{E} \\
& \vec{\nabla}^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} \mathbf{P}}{\partial t^{2}} \quad \text { "Inhomogeneous Wave Equation" }
\end{aligned}
$$

Maxwell's Equations in a Medium

- The induced polarization, \mathbf{P}, contains the effect of the medium:

$$
\vec{\nabla}^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} \mathbf{P}}{\partial t^{2}}
$$

- Sinusoidal waves of all frequencies are solutions to the wave equation
- The polarization (P) can be thought of as the driving term for the solution to this equation, so the polarization determines which frequencies will occur.
- For linear response, \mathbf{P} will oscillate at the same frequency as the input.

$$
\mathbf{P}(\mathbf{E})=\varepsilon_{0} \chi \mathbf{E}
$$

- In nonlinear optics, the induced polarization is more complicated:

$$
\mathbf{P}(\mathbf{E})=\varepsilon_{0}\left(\chi^{(1)} \mathbf{E}+\chi^{(2)} \mathbf{E}^{2}+\chi^{(3)} \mathbf{E}^{3}+\ldots\right)
$$

- The extra nonlinear terms can lead to new frequencies.

Solving the wave equation:
 linear induced polarization

For low irradiances, the polarization is proportional to the incident field:

$$
\mathbf{P}(\mathbf{E})=\varepsilon_{0} \chi \mathbf{E}, \quad \mathbf{D}=\varepsilon_{0} \mathbf{E}+\mathbf{P}=\varepsilon_{0}(1+\chi) \mathbf{E}=\varepsilon \mathbf{E}=n^{2} \mathbf{E}
$$

In this simple (and most common) case, the wave equation becomes:
$\vec{\nabla}^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=\frac{1}{c^{2}} \chi \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}$
Using: $\quad \varepsilon_{0} \mu_{0}=1 / c^{2}$

The electric field is a vector function in 3D, so this is actually 3 equations:

$$
\begin{aligned}
\rightarrow & \vec{\nabla}^{2} \mathbf{E}-\frac{n^{2}}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=0 \\
& \varepsilon_{0}(1+\chi)=\varepsilon=n^{2} \\
& \vec{\nabla}^{2} E_{x}(\mathbf{r}, t)-\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} E_{x}(\mathbf{r}, t)=0
\end{aligned}
$$

$$
\vec{\nabla}^{2} E_{y}(\mathbf{r}, t)-\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} E_{y}(\mathbf{r}, t)=0
$$

$$
\vec{\nabla}^{2} E_{z}(\mathbf{r}, t)-\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} E_{z}(\mathbf{r}, t)=0
$$

Plane wave solutions for the wave equation

If we assume the solution has no dependence on x or y :

$$
\begin{aligned}
& \vec{\nabla}^{2} \mathbf{E}(z, t)=\frac{\partial^{2}}{\partial x^{2}} \mathbf{E}(z, t)+\frac{\partial^{2}}{\partial y^{2}} \mathbf{E}(z, t)+\frac{\partial^{2}}{\partial z^{2}} \mathbf{E}(z, t)=\frac{\partial^{2}}{\partial z^{2}} \mathbf{E}(z, t) \\
& \rightarrow \frac{\partial^{2} \mathbf{E}}{\partial z^{2}}-\frac{n^{2}}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=0
\end{aligned}
$$

The solutions are oscillating functions, for example

$$
\mathbf{E}(z, t)=\hat{\mathbf{x}} E_{x} \cos \left(k_{z} z-\omega t\right)
$$

Where $\quad \omega=k c, \quad k=2 \pi n / \lambda, \quad v_{p h}=c / n$
This is a linearly polarized wave.
For a plane wave \mathbf{E} is perpendicular to \mathbf{k}, so \mathbf{E} can also point in y-direction

Complex notation for EM waves

- Write cosine in terms of exponential
$\mathbf{E}(z, t)=\hat{\mathbf{x}} E_{x} \cos (k z-\omega t+\phi)=\hat{\mathbf{x}} E_{x} \frac{1}{2}\left(e^{i(k z-\omega t+\phi)}+e^{-i(k z-\omega t+\phi)}\right)$
- Note E-field is a real quantity.
- It is convenient to work with just one component
- Method 1:

$$
\mathbf{E}(z, t)=\hat{\mathbf{x}} \operatorname{Re}\left[A e^{i(k z-\omega t)}\right] \quad A=E_{x} e^{i \phi}
$$

- Method 2:

$$
\mathbf{E}(z, t)=\hat{\mathbf{x}}\left(A e^{i(k z-\omega t)}+c . c .\right) \quad A=\frac{1}{2} E_{x} e^{i \phi}
$$

- In nonlinear optics, we have to explicitly include conjugate term.

Leads to extra factor of $1 / 2$.

Wave energy and intensity

- Both E and H fields have a corresponding energy density ($\mathrm{J} / \mathrm{m}^{3}$)
- For static fields (e.g. in capacitors) the energy density can be calculated through the work done to set up the field

$$
\rho=\frac{1}{2} \varepsilon E^{2}+\frac{1}{2} \mu H^{2}
$$

- Some work is required to polarize the medium
- Energy is contained in both fields, but H field can be calculated from E field

H field from E field

- H field for a propagating wave is in phase with E-field

$$
\begin{aligned}
\mathbf{H} & =\hat{\mathbf{y}} H_{0} \cos \left(k_{z} z-\omega t\right) \\
& =\hat{\mathbf{y}} \frac{k_{z}}{\omega \mu_{0}} E_{0} \cos \left(k_{z} z-\omega t\right)
\end{aligned}
$$

- Amplitudes are not independent

$$
\begin{aligned}
& H_{0}=\frac{k_{z}}{\omega \mu_{0}} E_{0} \quad k_{z}=n \frac{\omega}{c} \quad c^{2}=\frac{1}{\mu_{0} \varepsilon_{0}} \rightarrow \frac{1}{\mu_{0} c}=\varepsilon_{0} c \\
& H_{0}=\frac{n}{c \mu_{0}} E_{0}=n \varepsilon_{0} c E_{0}
\end{aligned}
$$

Energy density in an EM wave

- Back to energy density, non-magnetic

$$
\begin{array}{ll}
\rho=\frac{1}{2} \varepsilon E^{2}+\frac{1}{2} \mu_{0} H^{2} & H=n \varepsilon_{0} c E \\
\rho=\frac{1}{2} \varepsilon_{0} n^{2} E^{2}+\frac{1}{2} \mu_{0} n^{2} \varepsilon_{0}^{2} c^{2} E^{2} & \varepsilon=\varepsilon_{0} n^{2} \\
\mu_{0} \varepsilon_{0} c^{2}=1 & \\
\rho=\varepsilon_{0} n^{2} E^{2}=\varepsilon_{0} n^{2} E^{2} \cos ^{2}\left(k_{z} z-\omega t\right)
\end{array}
$$

Equal energy in both components of wave

Cycle-averaged energy density

- Optical oscillations are faster than detectors
- Average over one cycle:

$$
\langle\rho\rangle=\varepsilon_{0} n^{2} E_{0}{ }^{2} \frac{1}{T} \int_{0}^{T} \cos ^{2}\left(k_{z} z-\omega t\right) d t
$$

- Graphically, we can see this should = 1/2

- Regardless of position z

$$
\langle\rho\rangle=\frac{1}{2} \varepsilon_{0} n^{2} E_{0}^{2}
$$

Intensity and the Poynting vector

- Intensity is an energy flux ($\mathrm{J} / \mathrm{s} / \mathrm{cm}^{2}$)
- In EM the Poynting vector give energy flux

$\mathbf{S}=\mathbf{E} \times \mathbf{H}$

- For our plane wave,
$\mathbf{S}=\mathbf{E} \times \mathbf{H}=E_{0} \cos \left(k_{z} z-\omega t\right) n \varepsilon_{0} c E_{0} \cos \left(k_{z} z-\omega t\right) \hat{\mathbf{x}} \times \hat{\mathbf{y}}$
$\mathbf{S}=n \varepsilon_{0} c E_{0}^{2} \cos ^{2}\left(k_{z} z-\omega t\right) \hat{\mathbf{z}}$
- \mathbf{S} is along \mathbf{k}
- Time average: $\quad \mathbf{S}=\frac{1}{2} n \varepsilon_{0} c E_{0}^{2} \hat{\mathbf{z}}$
- Intensity is the magnitude of S

$$
I=\frac{1}{2} n \varepsilon_{0} c E_{0}^{2}=\frac{c}{n} \rho=V_{\text {phase }} \cdot \rho \quad \text { Photon flux: } \quad F=\frac{I}{h v}
$$

Calculating intensity with complex wave representation

- Using the convention that we work with the complex form, with the field being the real part
$\underset{\sim}{\mathbf{E}(z, t)=\hat{\mathbf{x}}} \operatorname{Re}\left[A e^{i(k z-\omega t)}\right]$
$A=E_{x} e^{i \phi}$
- Or write

$$
\mathbf{E}(z, t)=\mathbf{E}_{0} e^{i(k z-\omega t)} \quad \mathbf{E}_{0} \text { complex, vector }
$$

- take the real part when we want the field
- Time-averaged intensity

$$
I=\frac{1}{2} n \varepsilon_{0} c \mathbf{E}_{\mathbf{0}} \cdot \mathbf{E}_{\mathbf{0}}^{*}
$$

- Notice this is the sum of intensities for the different polarization components

Parseval's theorem

FT gives a different representation of the signal.
Energy must be conserved.

$$
\begin{aligned}
& \int|f(t)|^{2} d t=\frac{1}{2 \pi} \int|F(\omega)|^{2} d \omega \\
& =\frac{1}{2 \pi} \int\left[\int f(t) e^{i \omega t} d t\right]\left[\int f\left(t^{\prime}\right) e^{i \omega t^{\prime}} d t^{\prime}\right]^{*} d \omega \quad \begin{array}{l}
\text { Note independent integrals for } \mathrm{t}, \mathrm{t}^{\prime} \\
\text { Apply conjugation inside integral }
\end{array} \\
& =\frac{1}{2 \pi} \int\left[\int f(t) e^{i \omega t} d t\right]\left[\int f^{*}\left(t^{\prime}\right) e^{-i \omega t^{\prime}} d t^{\prime}\right] d \omega \quad \text { Gather } \omega \text { terms into one integral. } \\
& =\int d t f(t) \int d t^{\prime} f^{*}\left(t^{\prime}\right)\left(\frac{1}{2 \pi} \int e^{i \omega\left(t-t^{\prime}\right)} d \omega\right)=\int d t f(t) \int d t^{\prime} f^{*}\left(t^{\prime}\right) \delta\left(t^{\prime}-t\right) \\
& =\int d t f(t) f^{*}(t)
\end{aligned}
$$

Convolution theorem

FT of the product of two functions is the convolution of the transforms

$$
\begin{aligned}
& F T\{f(t) g(t)\}=\frac{1}{2 \pi} F(\omega) \otimes G(\omega) \\
& \\
& \begin{aligned}
& F T\{f(t) g(t)\}=\int f(t) g(t) e^{i \omega t} d t \\
&=\int f(t)\left[\frac{1}{2 \pi} \int G\left(\omega^{\prime}\right) e^{-i \omega^{\prime} t} d \omega^{\prime}\right] e^{i \omega t} d t \quad \text { Note independent variables for } \omega, \omega^{\prime} \\
& \quad=\frac{1}{2 \pi} \int G\left(\omega^{\prime}\right) d \omega^{\prime} \int f(t) e^{i\left(\omega-\omega^{\prime}\right) t} d t \quad \text { Swap order of integration: t first } \\
& \quad=\frac{1}{2 \pi} \int F\left(\omega-\omega^{\prime}\right) G\left(\omega^{\prime}\right) d \omega^{\prime}=\frac{1}{2 \pi} F(\omega) \otimes G(\omega)
\end{aligned}
\end{aligned}
$$

Inverse FT of the product of two functions is the convolution of the transforms

$$
F T^{-1}\{F(\omega) G(\omega)\}=f(t) \otimes g(t)
$$

Graphical approach to convolution

Input functions

Figure 6-1 Functions used to illustrate convolution by graphical methods.

output

Figure 6-3 Resulting convolution of functions shown in Fig. 6-1.

Graphical view

$$
\xrightarrow[0]{\text { a } f(\alpha) h(3-\alpha)}
$$

Figure 6-2 Graphical method for convolving functions of Fig. 6-1.

Smoothing effects

Figure 6-5 Smoothing effects of convolution.

Figure 6-7 Repeated convolution of four rectangle functions.

Figure 6-8 Repeated convolution of the function $\exp \{-x\} \operatorname{step}(x)$.

