
Solu%ons	of	scalar	wave	equa%on	

•  2nd	order	PDE:	
–  Assume	separable	solu%on	

–  2	solu%ons	for	f(z),	g(t)	
–  Full	solu%on	is	a	linear	combina%on	of	both	solu%ons	

–  Equivalent	representa%on:	
	
			forward	propaga%ng	+	backward	propaga%ng	waves		

•  Complex	(phasor)	representa%on: 		

  ψ (z,t) = f z( )g t( ) = A1 coskz + A2 sin kz( ) B1 cosωt + B2 sinωt( )

  
ψ (z,t) = Re aei kz−ωt+φ( )⎡

⎣
⎤
⎦

  ψ (z,t) = A1 cos kz +ωt +φ1( ) + A2 cos kz −ωt +φ2( )

  
∂2

∂z2ψ (z,t) − 1
c2

∂2

∂t2ψ (z,t) = 0

  ψ (z,t) = f z( )g t( )

  
ψ (z,t) = Re Aei kz−ωt( )⎡

⎣
⎤
⎦or	

Here	A	is	complex,	includes	phase	



Maxwell's	Equa%ons	to	wave	eqn	
•  The	induced	polariza%on,	P,		contains	the	effect	of	the	medium:		

    


∇⋅E = 0          


∇×E = − ∂B

∂t

∇⋅B = 0          


∇×B = 1

c2

∂E
∂t

+ µ0

∂P
∂t

Take the curl:

“Inhomogeneous Wave Equation”

    


∇×


∇×E( ) = − ∂

∂t

∇×B = − ∂

∂t
1
c2

∂E
∂t

+ µ0

∂P
∂t

⎛
⎝⎜

⎞
⎠⎟

Use the vector ID:

 A × B ×C( ) = B A ⋅C( )−C A ⋅B( )

   

∇×


∇×E( ) = ∇ ∇⋅E( )− ∇⋅


∇( )E = −


∇2E

    


∇2E− 1

c2

∂2E
∂t2 = µ0

∂2 P
∂t2



Maxwell's	Equa%ons	in	a	Medium	
•  The	induced	polariza%on,	P,		contains	the	effect	of	the	medium:		

• 	Sinusoidal	waves	of	all	frequencies	are	solu%ons	to	the	wave	equa%on	
• 	The	polariza%on	(P)	can	be	thought	of	as	the	driving	term	for	the	solu%on	to	this	
equa%on,	so	the	polariza%on	determines	which	frequencies	will	occur.	

• 	For	linear	response,	P	will	oscillate	at	the	same	frequency	as	the	input.	

• 	In	nonlinear	op%cs,	the	induced	polariza%on	is	more	complicated:	

• 	The	extra	nonlinear	terms	can	lead	to	new	frequencies.				

    


∇2E− 1

c2

∂2E
∂t2 = µ0

∂2 P
∂t2

  P E( ) = ε0χE

  
P E( ) = ε0 χ (1)E+ χ (2)E2 + χ (3)E3 + ...( )



Solving	the	wave	equa%on:	
												linear	induced	polariza%on	
For low irradiances, the polarization is proportional to the incident field:

   P E( ) = ε0χE, D = ε0E+ P = ε0 1+ χ( )E = εE = n2E

 

In this simple (and most common) case, the wave equation becomes:

The electric field is a vector 
function in 3D, so this is actually 3 
equations:

Using:   ε0µ0 = 1/ c2

    


∇2E− 1

c2

∂2E
∂t2 = 1

c2 χ
∂2E
∂t2     

→

∇2E− n2

c2

∂2E
∂t2 = 0

    


∇2Ex r,t( )− n2

c2

∂2

∂t2 Ex r,t( ) = 0

    


∇2Ey r,t( )− n2

c2

∂2

∂t2 Ey r,t( ) = 0

    


∇2Ez r,t( )− n2

c2

∂2

∂t2 Ez r,t( ) = 0

  ε0 1+ χ( ) = ε = n2



Plane	wave	solu%ons	for	the	wave	equa%on	

This is a linearly polarized wave. 
For a plane wave E is perpendicular to k, so E can also point in y-direction

Where

   
→ ∂2E

∂z2 − n2

c2

∂2E
∂t2 = 0

If we assume the solution has no dependence on x or y:

  ω = k c, k = 2πn / λ, vph = c / n

    


∇2E z,t( ) = ∂2

∂x2 E z,t( ) + ∂2

∂y2 E z,t( ) + ∂2

∂z2 E z,t( ) = ∂2

∂z2 E z,t( )

The solutions are oscillating functions, for example

E z,t( ) = x̂Ex cos kzz −ωt( )



Complex	nota%on	for	EM	waves	

• Write	cosine	in	terms	of	exponen%al	

–  Note	E-field	is	a	real	quan%ty.		
•  It	is	convenient	to	work	with	just	one	component	

–  Method	1:	

–  Method	2:		

•  In	nonlinear	op%cs,	we	have	to	explicitly	include	conjugate	term.	
Leads	to	extra	factor	of	½.		

	

E z,t( ) = x̂Ex cos kz −ωt +φ( ) = x̂Ex
1
2
ei kz−ωt+φ( ) + e− i kz−ωt+φ( )( )

E z,t( ) = x̂Re Aei kz−ωt( )⎡⎣ ⎤⎦

A = 1
2 Exe

iφE z,t( ) = x̂ Aei kz−ωt( ) + c.c.( )

A = Exe
iφ



Wave	energy	and	intensity	

•  Both	E	and	H	fields	have	a	corresponding	energy	
density	(J/m3)	
–  For	sta%c	fields	(e.g.	in	capacitors)	the	energy	
density	can	be	calculated	through	the	work	done	to	
set	up	the	field	

	
–  Some	work	is	required	to	polarize	the	medium	

–  Energy	is	contained	in	both	fields,	but	H	field	can	be	
calculated	from	E	field	

ρ = 1
2 εE

2 + 1
2 µH

2



H	field	from	E	field	

•  H	field	for	a	propaga%ng	wave	is	in	phase	with	E-field	

•  Amplitudes	are	not	independent	

   

H = ŷH0 cos kz z −ωt( )
= ŷ

kz

ωµ0

E0 cos kz z −ωt( )

  
H0 =

kz

ωµ0

E0
 
kz = nω

c   
c2 = 1

µ0ε0

→ 1
µ0c

= ε0c

  
H0 =

n
cµ0

E0 = nε0cE0



Energy	density	in	an	EM	wave	

•  Back	to	energy	density,	non-magne%c	

ρ = 1
2 εE

2 + 1
2 µ0H

2

ε = ε0n
2

  µ0ε0c
2 = 1

  H = nε0cE

ρ = 1
2 ε0n

2E2 + 1
2 µ0n

2ε0
2c2E2

ρ = ε0n
2E2 = ε0n

2E2 cos2 kzz −ωt( )
Equal	energy	in	both	components	of	wave	



Cycle-averaged	energy	density	

•  Op%cal	oscilla%ons	are	faster	than	detectors	
•  Average	over	one	cycle:	

–  Graphically,	we	can	see	this	should	=	½		

–  Regardless	of	posi%on	z	

ρ = ε0n
2E0

2 1
T

cos2 kzz −ωt( )dt
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Intensity	and	the	Poyn%ng	vector	

•  Intensity	is	an	energy	flux	(J/s/cm2)	
•  In	EM	the	Poyn%ng	vector	give	energy	flux	

–  For	our	plane	wave,	

–  	S	is	along	k	
•  Time	average:	
•  Intensity	is	the	magnitude	of	S		

S = E×H

S = E×H = E0 cos kzz −ωt( )nε0cE0 cos kzz −ωt( ) x̂ × ŷ
S = nε0cE0

2 cos2 kzz −ωt( ) ẑ

S = 1
2 nε0cE0

2ẑ

I = 1
2
nε0cE0

2 = c
n
ρ =Vphase ⋅ ρ F = I

hν
Photon	flux:	



Calcula%ng	intensity	with	complex	wave	
representa%on	

•  Using	the	conven%on	that	we	work	with	the	complex	
form,	with	the	field	being	the	real	part	

–  Or	write	

–  take	the	real	part	when	we	want	the	field		
•  Time-averaged	intensity		
	
–  No%ce	this	is	the	sum	of	intensi%es	for	the	different	
polariza%on	components	

E z,t( ) = x̂Re Aei kz−ωt( )⎡⎣ ⎤⎦ A = Exe
iφ

I = 1
2
nε0cE0 ⋅E0

*

E z,t( ) =E0ei kz−ωt( ) E0	complex,	vector	



Parseval’s	theorem	

FT	gives	a	different	representa2on	of	the	signal.		
Energy	must	be	conserved.	

f t( ) 2 dt∫ = 1
2π

F ω( ) 2 dω∫
= 1
2π

f t( )eiωt dt∫⎡⎣ ⎤
⎦ f ′t( )eiω ′t d ′t∫⎡⎣ ⎤

⎦
*
dω∫

= 1
2π

f t( )eiωt dt∫⎡⎣ ⎤
⎦ f * ′t( )e− iω ′t d ′t∫⎡⎣ ⎤

⎦dω∫

= dt f t( )∫ d ′t f * ′t( )∫
1
2π

eiω t− ′t( ) dω∫⎛
⎝⎜

⎞
⎠⎟ == dt f t( )∫ d ′t f * ′t( )∫ δ ′t − t( )

Gather	ω	terms	into	one	integral.	

Note	independent	integrals	for	t,	t’	
Apply	conjuga%on	inside	integral	

= dt f t( ) f * t( )∫



Convolu%on	theorem	

FT	of	the	product	of	two	func%ons	is	the	convolu%on	of	the	transforms	

FT f t( )g t( ){ } = 1
2π

F ω( )⊗G ω( )

Swap	order	of	integra%on:	t	first	

Note	independent	variables	for	ω,	ω’	

FT f t( )g t( ){ } = f t( )g t( )eiωt dt∫

= f t( ) 1
2π

G ′ω( )e− i ′ω t d ′ω∫⎡
⎣⎢

⎤
⎦⎥
eiωt dt∫

= 1
2π

G ′ω( )d ′ω f t( )ei ω− ′ω( )t dt∫∫

= 1
2π

F ω − ′ω( )G ′ω( )d ′ω∫ = 1
2π

F ω( )⊗G ω( )

Inverse	FT	of	the	product	of	two	func%ons	is	the	convolu%on	of	the	transforms	

FT −1 F ω( )G ω( ){ } = f t( )⊗ g t( )



Graphical	approach	to	convolu%on	
Input	func<ons	

output	

Graphical	view	



Smoothing	effects	


