
Advanced Engineering Mathematics Homework Six

Differential Equations : Sturm-Liouville Problems, Power Series, Conservations Laws, PDE

Text: 5.1, 5.7, 12.1 Lecture Notes : ODE Review and 13 Lecture Slides: N/A

Quote of Homework Seven

In life there are infinitely-many directions and each one is permitted.

CSM Professor Emeritus: John DeSanto - Mathematical Physics (2007)

1. Sturm-Liouville Problems

Recall the Sturm-Liouville eigenproblem given by,

Lu =
1

w(x)

„
− d

dx

»
p(x)

du

dx

–
+ q(x)u

«
= λu, λ ∈ C(1)

whose nontrivial eigenfunctions must satisfy the boundary conditions,

k1u(a) + k2u
′(a) = 0(2)

l1u(b) + l2u
′(b) = 0.(3)

1.1. Orthogonality of Solutions. Let (λ1, u1) and (λ2, u2) be two different eigenvalue/eigenfunction pairs. Show that u1 and u2 are

orthogonal. That is, show that 〈u1, u2〉 = 0 with respect to the inner-product defined by 〈f, g〉 =

Z b

a

f(x)g(x)w(x)dx.

1.2. Bessel’s Equation. Show that if p(x) = x, q(x) = ν2/x and w(x) = x/λ then (1) becomes x2u′′ + xu′ + (x2 − ν2)u = 0, which is

known as Bessel’s equation of order ν.

1.3. Fourier Bessel Series. A solution to Bessel’s equation is for ν = n ∈ N,

Jn(x) = xn
∞X
m=0

(−1)mx2m

22m+nm!(n+m)!
, n = 1, 2, 3, . . .(4)

which is called Bessel’s function of the first-kind of order n. Since these functions manifest from a SL problem they naturally orthogonal

and have an orthogonality condition,

〈Jn(xkn,m), Jn(xkn,i)〉 =

Z R

0

xJn(xkn,m)Jn(xkn,i)dx =
δmi
2

[RJn+1(kn,iR)]2 .(5)

Using this show that the coefficients in the Fourier-Bessel series,

f(x) =

∞X
m=1

amJn(kn,mx),(6)

are given by,

ai =
2

R2J2
n+1(kn,iR)

Z R

0

xJn(kn,iR)f(x)dx, i = 1, 2, 3, . . .(7)

2. Power-Series Solutions to ODE’s and Hyperbolic Trigonometric Functions

Consider the ordinary differential equation:

y′′ − y = 0(8)

2.1. General Solution - Standard Form. Show that the solution to (8) is given by y(x) = c1e
x + c2e

−x.

2.2. General Solution - Nonstandard Form. Show that y(x) = b1 sinh(x) + b2 cosh(x) is a solution to (8) where sinh(x) =
ex − e−x

2

and cosh(x) =
ex + e−x

2
.

2.3. Conversion from Standard to Nonstandard Form. Show that if c1 =
b1 + b2

2
and c2 =

b1 − b2
2

then y(x) = c1e
x + c2e

−x =

b1 cosh(x) + b2 sinh(x).

1
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2.4. Relation to Power-Series. Assume that y(x) =

∞X
n=0

anx
n to find the general solution of (8) in terms of the hyperbolic sine and

cosine functions. 1

3. Conservation Laws in One-Dimension

Recall that the conservation law encountered during the derivation of the heat equation was given by,

∂u

∂t
= −κ∇φ,(10)

which reduces to

∂u

∂t
= −κ∂φ

∂x
, κ ∈ R(11)

in one-dimension of space.2 In general, if the function u = u(x, t) represents the density of a physical quantity then the function φ = φ(x, t)

represents its flux. If we assume the φ is proportional to the negative gradient of u then, from (11), we get the one-dimensional heat/diffusion

equation.3

3.1. Transport Equation. Assume that φ is proportional to u to derive, from (11), the convection/transport equation, ut+cux = 0 c ∈ R.

3.2. General Solution to the Transport Equation. Show that u(x, t) = f(x− ct) is a solution to this PDE.

3.3. Diffusion-Transport Equation. If both diffusion and convection are present in the physical system then the flux is given by,

φ(x, t) = cu− dux, where c, d ∈ R+. Derive from, (11), the convection-diffusion equation ut + cux − duxx = 0.

3.4. Convection-Diffusion-Decay. If there is also energy/particle loss proportional to the amount present then we introduce to the

convection-diffusion equation the term λu to get the convection-diffusion-decay equation,4

3.5. General Importance of Heat/Diffusion Problems. Given that,

(12) ut = Duxx − cux − λu.

Show that by assuming, u(x, t) = w(x, t)eαx−βt, (12) can be transformed into a heat equation on the new variable w where α = c/(2D)

and β = λ+ c2/(4D).5

4. Some Solutions to common PDE

Show that the following functions are solutions to their corresponding PDE’s.

4.1. Right and Left Travelling Wave Solutions. u(x, t) = f(x− ct) + g(x+ ct) for the 1-D wave equation.

4.2. Decaying Fourier Mode. u(x, t) = e−4ω2t sin(ωx) where c = 2 for the 1-D heat equation.

4.3. Radius Reciprocation. u(x, y, z) =
1p

x2 + y2 + z2
for the 3-D Laplace equation.

1The hyperbolic sine and cosine have the following Taylor’s series representations centred about x = 0,

cosh(x) =

∞X
n=0

x2n

(2n)!
sinh(x) =

∞X
n=0

x2n+1

(2n+ 1)!
.(9)

It is worth noting that these are basically the same Taylor series as cosine/sine with the exception that the signs of the terms do not alternate. From

this we can gather a final connection for wrapping all of these functions together. If you have the Taylor series for the exponential function and extract

the even terms from it then you have the hyperbolic cosine function. Taking the hyperbolic cosine function and alternating the sign of its terms gives

you the cosine function. Extracting the odd terms from the exponential function gives the same statements for the hyperbolic sine and sine functions.

The reason these functions are connected via the imaginary number system is because when i is raised to integer powers it will produce these exact sign

alternations. So, if you remember ex =
P∞
n=0 x

n/n! and i =
√
−1 then the rest (hyperbolic and non-hyperbolic trigonometric functions) follows!

2When discussing heat transfer this is known as Fourier’s Law of Cooling. In problems of steady-state linear diffusion this would be called Fick’s

First Law. In discussing electricity u could be charge density and q would be its flux.
3AKA Fick’s Second Law associated with linear non-steady-state diffusion.
4The uxx term models diffusion of energy/particles while ux models convection, u models energy/particle loss/decay. The final term should not be

surprising! Wasn’t the appropriate model for radioactive/exponential decay Y ′ = −α2Y ?
5This shows that the general PDE (12) can be solved using heat equation techniques.
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4.4. Driving/Forcing Affects. u(x, y) = x4 + y4 where f(x, y) = 12(x2 + y2) for the 2-D Poisson equation.

Note: The PDE in question are,

• Laplace’s equation : 4u = 0

• Poisson’s equation : 4u = f(x, y, z)

• Heat/Diffusion Equation : ut = c24u
• Wave Equation : utt = c24u

and can be found on page 563 of Kryszig. The following will outline some common notations. It is assumed all differential operators are

being expressed in Cartesian coordinates.6

• Notations for partial derivatives,

∂u

∂x
= ux = ∂xu(13)

• Nabla the differential operator,

∇ =

264 ∂x

∂y

∂z

375(14)

• Gradient of a scalar function,

∇u =

264 ∂xu

∂yu

∂zu

375 =

264 ux

uy

uz

375(15)

• Divergence of a vector,

∇ · v =

264 ∂x

∂y

∂z

375 ·
264 v1

v2

v3

375 = ∂xv1 + ∂yv2 + ∂zv3(16)

• Curl of a vector,

∇× v =

264 ∂yv3 − ∂zv2
∂zv1 − ∂xv3
∂xv2 − ∂yv1

375(17)

• Notations for the Laplacian,

4u = ∇ · ∇u =

264 ∂x

∂y

∂z

375 ·
264 ∂xu

∂yu

∂zu

375(18)

= ∂xxu+ ∂yyu+ ∂zzu(19)

= uxx + uyy + uzz(20)

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
(21)

6Of course others have worked out the common coordinate systems, which requires some elbow grease and the multivariate chain rule. Those

interested in the results can find them at Nabla in Cylindrical and Spherical

http://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates
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