MATH-332: Linear Algebra

Chapter: 5

July 21, 2009

Eigenvalues and Eigenvectors

<u>Section</u> 5.3: Diagonalization

pgs. 319 - 327

	<u>Lecture</u> : Diagonalization
Topics:	Diagonalization - $A = PDP^{-1}$
	Process for diagonalization
	Matrices which are not diagonalizable
Problems	Prac: 1, 2
	Prob: 3, 7, 9, 11, 19-29(odd)

Section Goals

- Understand how eigenvalue/eigenvector problems can be used to define a similarity transformation and a basis under which the original matrix appears diagonal.
- Develop necessary criteria for a matrix to be diagonalized.

Section Objectives

- Prove theorem 5.3.5 on page 320, which states that if a matrix gives rise to *n*-many eigenvectors then the matrix possesses a similar matrix, which is diagonal in the eigenvector basis.
- Provide examples matrix diagonalization highlighting the term geometric multiplicity.
- Show how this diagonalization allows one to raise a matrix to an arbitrary power by exploitation of the properties of diagonal matrices.
- State theorems 5.3.6 and 5.3.7, which give diagonalization criteria.