MATH 225 - Differential Equations June 1 , 2008
Homework 5, Field 2008 Not Due Date: June 5, 2008

SECOND-ORDER LINEAR EQUATIONS - MASS-SPRING SYSTEMS - POWER SERIES

Consider the following second-order linear ordinary differential equation with constant coeflicients.

d*y dy
T = I W e .
dt-+bd +cy= f(t), a,b,ceR (1)

Solve (1) for the following cases, when possible solve for any unknown coefficients,

ta) =l = -2 e =—8; fl1)=:3e

(b) a-=1.b —=4. e =4, f(t) = Set 4%

(¢) a=1,b=—4, c=13, f(¥) =0, subject to, y(0) = 1 and y/'(0) = —

(d) a b =10, ¢=9, f(t) = 28m(2t).

(e} a=1:b=%0; e=29; f(t) = cos(3t);

Comnsider the model equation for a mass suspended from an ideal spring. If we include the effects of frictional

forces and an external applied force, f(t), we can derive from force laws® the second-order linear ordinary
differential equations with constant coeflicients:

c[‘zy dy
[
e 0

+ ky = f(t), m,b,k e R" U{0}, (2)

(a) Convert the second-order lincar ODE (3) to a system ol first-order ODE’s.

(b) If f(#) = 0 for all £ and b = 0 we call this unforced oscillator simple. Show that the fixed point of an
unforced simple harmonic oscillator is always a center.?

(¢) We now consider the effects of friction using MAsSSPRING and the systems defined by m = & = 1 and
by =0, by = 0.5, by =1, by = 1.5, by = 2. For cach of the previous systems plot a trajectory whose
initial condition is somewhere near the center of the first quadrant and using these plots describe effects of
friction on the long-term behavior to cach of the trajectories. °

3. Now we consider the effects of external forcing on a simple harmonic oscillator.® Of all of the external forces to

consider the most interesting involve periodic forcing. Here we consider an applied force given by

f(t) = Fcos(wt), F.w e RTU{0}. Run the program FORCEDMASSSPRING for all permutations of the values,
Fi =1, F5 =2, wy =0, wy = 0.5, w3 = 0.75, wy = 1, plotting the trajectories whose initial condition is
roughly in the center of the first quadrant. Using this information respond to the following:

(a) How does constant forcing effect the fixed point of the system? °

(b) Now consideri ing the parameter w, for w < 1, how does oscillatory forcing effect the behavior of trajectories
in phase space?®

*Remember that when deriving this equation we used Hook’s law, which says that in the elastic limit the restoring force is linearly pro-
rtional to the displacement/deformation. Outside of this limit the relationship becomes nonlinear and can be used to explain phenomenon
¢ non-reversible deformations associated with large displacements.

"We may call this oscillator simple but it is also classic example of a conservative system. In this case it is energy, which is conserved.
1e notion of conserved quantities will be explored in the next homework and applied to nonlinear systems in chapter 5.3

“Iriction is considered a dissipative effect. Normally when discussing a conservative system it is common to also rhscuss the effects of
rresponding dissipative effects. This may not always be as simple as studying the effects of a single term in the system.

“What we are about to sec here is so important to physical systems prone to oscillations that we will study it again in the next homework
rough the model equation (3) and not the displacement-velocity system found in problem (2).

“In mathematical terms the time-independent inhomogeneity has shifted the fixed point to be off the origin.

*Since the system is no longer autonomous there are no fized points, however the trajectories do appear to be ‘orbiting’ points in phase
ace and one of them seems to correspond to the fixed point of part (a). That is to say, though we do not have fized poz.nt.s, by delinition.
r understanding of them can be useful in describing non-autonomous cases.



(¢) Consider the case where w = .75 and looking at the graph of y versus ¢ notice that the curve is an oscillatory
function whose amplitude is itself also oscillating.? This pattern, which occurs when the [requency of forcing
nears the frequency of natural oscillation, is called a beat pattern. Using http://en.wikipedia.org/wiki/
Beat _\%28acoustics\%29 cxplain the connection between this mass-spring phenomenon and acoustics.

(d) Explain what occurs to the mass-spring system when w = 1 and give examples of other phenomenon, which
have similar qualitative features. 1°

4. Consider the governing equation for a mass suspended from an ideal spring. Including forces due to friction,
and an external applied force, f(¢), leads to the second order linecar ordinary differential equations with constant

coefficients:
2
d* d1 oo .
. j)/—I- J-f-ky: f(t), m,b.k e R™U{0}, (3)
dt- dt
(a) If b = 0 then the oscillator is called simple. Show that fr om the homogencous (not forced) simple harmonic
9
, _ , mv?  ky? d1 ,
oscillator one can derive the conservation law F; . = = + —1)/— where v = di and Ejre is a constant.’

(b) Assume that m = k = 2 and graph the conservation law in the yv-plane for Eyor = 1,4, 9. 2

(¢) Show that, for an unforced siimple harmonic oscillator, the that the solution can be written as yn(t) =
c1 cos(wol) + ¢ sin(wet). Determine wy in terms of m and k.

(d) Let f({) = cos(at), a € R. Pick the form of the particular solution, y,(), for the simple harmonic
oscillator. What happens when a = wy? Write down the functional form of the general solution for both
of these cases. (DO NOT SOLVE FOR THE UNDETERMINED COEFFICIENTS)

(e) Consider the program BEATSANDRESONANCE where a = 1.5.

Describe what happens to the general solution (green) as the circular frequency, w, of forcing is changed
from 0.5 through 1.5. 3

1i. Describe the changes to the homogenous solution (blurple) and nonhomogenous solution (red), relative
to one another, as the frequency of forcing is changed from 0.5 through 1.5

iii. If the energy of a single cycle of a sinusoidal-wave is proportional to the square of the amplitude then
compare the amount of energy in one beat envelope for when w =~ 0.5 to when w ~ 1.2. What happens
to the energy when w ~ 1.57

5. Consider the ordinary differential equation:

y—=i=0 (4)
o [ ' e \ - yiic ; i e - ¢ < e PR PR s ; o
We know that the general solution to this equation is y(t) = c1€” + coe “. Tt is common to write the solutions
: . < e i . Ct — C_t et + e——t
to (4) in terms of the hyperbolic trigonometric functions, sinh(t) = T cosh(t) = 5

(a) Show that y(t) = by sinh(¢) + by cosh(?) is a solution to the differential equation (4).

. . b1 + b b1 — b :
(b) Show that if ¢; = %2 and ¢ = _1_9 ° then y(t) = c1€' + coe™" = by cosh(t) + by sinh(t).
00
(c) Assume that y(t) = Z apt" and [ind the general solution of (4) in terms of the hyperbolic sine and cosine
n=(

functions. 4

"We say that the higher frequency oscillations are bounded by a lower frequency envelope. Qualitative changes to this envelope are
portant in the diffraction pattern of waves and as we will sce. in a moment, resonance.
*You may want to consider the following website to guide your thoughts http://en.wikipedia.org/wiki/Resonance
'Tn physics one would call this conservation law a constant of motion.
“These constants of motion are nothing more than trajectories of the simple harmonic oscillator in the phase-plane.
*You may find it useful to toggle the Envelope feature.
*The hyperbolic sine and cosine have the following Taylor’s series represeniations centered about t = 0:

cosh(t) = z

=0
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