Matrix Algebra - Row Reduction - Solutions to Linear Systems

1. Find the interpolating polynomial $p(t) = a_0 + a_1t + a_2t^2$ for the data (1,12), (2,15), (3,16).¹ Noting that the system is linear in the coefficient data, we seek to find a_0, a_1 and a_2 that satisfies,

$$a_0 + a_1(1) + a_2(1)^2 = 12 \tag{1}$$

$$a_0 + a_1(2) + a_2(2)^2 = 15 (2)$$

$$a_0 + a_1(3) + a_2(3)^2 = 16 (3)$$

2. It is common to think about the equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ as a transformation of the vector \mathbf{x} to a new vector \mathbf{b} given by the matrix multiplication $\mathbf{A}\mathbf{x}$. In this way every matrix can be thought of as a linear transformation applied to vectors.² Probably the most common vector transformation is that of a rotation, which in \mathbb{R}^2 is given by:

$$\mathbf{A} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$
(4)

Let $\mathbf{x} = \begin{bmatrix} 1 & 0 \end{bmatrix}^{\mathrm{T}}$. Describe or draw the results of the linear transformation $\mathbf{A}\mathbf{x}$ for $\theta \in \left\{0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi, \frac{5\pi}{4}, \frac{3\pi}{2}, \frac{7\pi}{4}, 2\pi\right\}$. How would these results change if $\mathbf{A} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$?

3. Given,

$$\mathbf{A} = \left[\begin{array}{rrr} 3 & 6 & 7 \\ 0 & 2 & 1 \\ 2 & 3 & 4 \end{array} \right].$$

Determine \mathbf{A}^{-1} via:

- (a) Calculate $det(\mathbf{A})$.
- (b) The Gauss-Jordan Method (pg.317).
- (c) The cofactor representation (Theorem 2 pg.318).
- (d) Check your result by showing $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$
- 4. Given the following for matrices:

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} c & d \\ a & b \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} a & b \\ kc & kd \end{bmatrix}, \quad \mathbf{D} = \begin{bmatrix} a+kc & b+kd \\ c & d \end{bmatrix}.$$

Calculate the determinants of the previous matrices. In each case, state the row operation used on **A** and describe how the row operation effects the determinant.

5. The determinant has a geometric interpretation. In \mathbb{R}^2 , det(**A**) is the area of the parallelogram formed by the two vectors $\mathbf{a}_1, \mathbf{a}_2$, where $\mathbf{A} = [\mathbf{a}_1 \, \mathbf{a}_2]$. In \mathbb{R}^3 , det(**A**) is the volume of the parallelepiped formed by the three vectors $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$, where $\mathbf{A} = [\mathbf{a}_1 \, \mathbf{a}_2 \, \mathbf{a}_3]$. For an illustration of these objects please see the PDF's posted on blackboard.

Using the concept of volume, explain why the determinant of a 3×3 matrix **A** is zero if and only if **A** is not invertable.³

¹An interpolating polynomial for a data set is a polynomial whose graph passes through every point in the data set.

²See http://en.wikipedia.org/wiki/Transformation_matrix for more information.

³If the three vectors, \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 , form a parallelepiped with zero volume then what can be said about their geometric configuration? If a matrix is not invertible then what can be said about the linear independence of the rows or columns?