Abstract Vector Spaces

Introduction to Infinite Dimensional Spaces

March 5, 2010

Scott Strong
sstrong@mines.edu

Colorado School of Mines

Overview/Keywords/References

Advanced Engineering Mathematics

Abstract Vectors Spaces, $L_{2}(a, b)$, Periodic Extension, Fourier Basis

Examples:N/A

- See Also:
- EK : 7.9 page 324-326, 11.1-11.3
- Begin:
- 09.LN.Introduction to Fourier Series: Review of Symmetric and Periodic Functions
- Homework 4

Before We Begin

Quote of Slide Set Four

Shannon McFarland: Give me a rampant intellectualism as a coping mechanism.

Chuck Palahniuk : Invisible Monsters (1999)

Axioms of a Vector Space

- Let V be a nonempty set of elements $\mathbf{a}, \mathbf{b}, \mathbf{c}$, which are called vectors. We say that V is a vector space if there are defined two algebraic operations, vector addition and scalar multiplication, such that,
- Commutativity: $\mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a}$
- Associativity : $\mathbf{a}+(\mathbf{b}+\mathbf{c})=(\mathbf{a}+\mathbf{b})+\mathbf{c}$
- Additive Identity : $\mathbf{a}+\mathbf{0}=\mathbf{a}$ for every $\mathbf{a} \in V$
- Additive Inverse : $\mathbf{a}+(-\mathbf{a})=\mathbf{0}$ for every $\mathbf{a} \in V$
- Distributivity : Let $\alpha, \beta \in \mathbb{R}$ then
$(\alpha+\beta)(\mathbf{a}+\mathbf{b})=\alpha \mathbf{a}+\alpha \mathbf{b}+\beta \mathbf{a}+\beta \mathbf{b}$
- Associativity : Let $\alpha, \beta \in \mathbb{R}$ then $\alpha(\beta \mathbf{a})=(\alpha \beta) \mathbf{a}$
- Multiplicative Identity : 1a=a
- \mathbb{R}^{n} is a vector space.

Examples of Abstract Vector Spaces

- The space of $n^{\text {th }}$-order polynomials, \mathbb{P}_{n}.
- The space of continuous functions on the real-line, $C(\mathbb{R})$.
- The space of n-times continuously differentiable functions on the real line, $C^{n}(\mathbb{R})$.
- The space of periodic functions whose principle period is from $-\pi$ to π.
- The space of square integrable functions on the domain $(a, b), L^{2}(a, b)$.

Fundamental Questions - Part I

In linear algebra we learned how to define a vector space by teasing out a basis set of linearly independent vectors via row-reduction. This constructive approach illustrates the concept of a vector space but the question is more often phrased in the following way:

- Given a vector space V how can one represent any element in this space?
Answer: Use a linear combination a basis vectors. This leads to another question:
- For abstract spaces how does one find a set of basis vectors?

Answer: In the abstract setting more math is required. Lucky for us this is the job of a mathematician and bases of common abstract spaces are already defined.

Fundamental Questions - Part II

Question: Assuming that we have a basis for a space then how do we find the coefficients in the linear combination required to represent some element of the space?

- Answer One: If there are a finite number of basis vectors then the problem of finding coefficients $c_{1}, c_{2}, c_{2}, \ldots, c_{n}$ for,

$$
\begin{equation*}
\mathbf{y}=\sum_{i=j}^{n} c_{j} \mathbf{v}_{j}, \tag{1}
\end{equation*}
$$

is a problem of row-reduction. This is true regardless of the space since any vector space of dimension n is isomorphic to \mathbb{R}^{n}. If there are an infinite number of basis vectors then the problem is more difficult.

Fundamental Questions - Part III

- Answer Two: In the case of an infinite dimensional vector space the the linear combination reads,

$$
\begin{equation*}
\mathbf{y}=\sum_{i=j}^{\infty} c_{j} \mathbf{v}_{j} \tag{2}
\end{equation*}
$$

and the iterative process of row-reduction cannot hope to find the infinite number of coefficients. In this case we must find other approaches. These techniques are more powerful but require geometric tools.

Abstract Inner-Product Spaces

A vector space is defined by its cardinal directions but has no geometric meaning. A vector space V equipped with a product $\langle\cdot, \cdot\rangle$ such that:

- Linearity : Let $\alpha, \beta \in \mathbb{R}$ then $\langle\alpha \mathbf{a}+\beta \mathbf{b}, \mathbf{c}\rangle=\alpha\langle\mathbf{a}, \mathbf{c}\rangle+\beta\langle\mathbf{b} \mathbf{c}\rangle$.
- Symmetry : $\langle\mathbf{a}, \mathbf{b}\rangle=\langle\mathbf{b}, \mathbf{a}\rangle$
- Positive-definiteness : $\langle\mathbf{a}, \mathbf{a}\rangle \geq 0$ and $\langle\mathbf{a}, \mathbf{a}\rangle=0 \Longleftrightarrow \mathbf{a}=0$

This additional structure induces the following properties:

- Orthogonality : $\langle\mathbf{a}, \mathbf{b}\rangle=0$ implies that \mathbf{a} is orthogonal to \mathbf{b}
- Length/Norm : $\|\mathbf{a}\|=\sqrt{\langle\mathbf{a}, \mathbf{a}\rangle}$.
- Cauchy-Schwarz :| $\langle\mathbf{a}, \mathbf{b}\rangle|\leq||\mathbf{a}||||\mathbf{b}| \mid$
- Parallelogram Rule : \|a $+\mathbf{b}\left\|^{2}+\right\| \mathbf{a}-\mathbf{b} \|^{2}=2\left(\|\mathbf{a}\|^{2}+\|\mathbf{b}\|^{2}\right)$
. Triangle Inequality : \|a $+\mathbf{b}\|\leq\| \mathbf{a}\|+\| \mathbf{b} \|$

Inner-Products and Orthogonal Expansions

Suppose that the vector space V with basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots\right\}$ is equipped with an inner-product $\langle\cdot, \cdot\rangle$ such that $\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle=\delta_{i j}$. Then for any $\mathbf{y} \in V$ we have,

$$
\begin{align*}
\mathbf{y}=\sum_{i=j}^{\infty} c_{j} \mathbf{v}_{j} \Longleftrightarrow\left\langle\mathbf{v}_{i}, \mathbf{y}\right\rangle & =\left\langle\mathbf{v}_{i}, \sum_{j=1}^{\infty} c_{j} \mathbf{v}_{j}\right\rangle \tag{3}\\
& =\sum_{j=1}^{\infty} c_{j}\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle \tag{4}\\
& =\sum_{j=1}^{\infty} c_{j} \delta_{j i}=c_{i} \tag{5}
\end{align*}
$$

which implies that the $i^{\text {th }}$ coefficient is given by $c_{i}=\left\langle\mathbf{v}_{i}, \mathbf{y}\right\rangle$ for $i=1,2,3, \ldots$.

The Abstract Inner-Product Space : $L_{2}(-\pi / \pi)$

We define $L_{2}(-\pi, \pi)$ to be the space of functions such that
$\int_{-\pi}^{\pi}(f(x))^{2} d x<\infty$. In homework 2 problem 5 we showed that
$\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x$ satisfies the axioms of inner-product.
Consequently, we now have that,

- $L_{2}(-\pi, \pi)$ is a vector-space of functions which have finite length with respect to the inner-product

$$
\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x
$$

This is all well and good but we still have an important question:
. How do we represent elements in this space?

The Concept of Periodic Extension

First, we should decide how to think about elements in the space $L_{2}(-\pi, \pi)$. Right now all we know is that elements in this space must have the property that,

- If $f \in L_{2}(-\pi, \pi)$ then the area under the curve of its square from $-\pi$ to π is finite.

This is not telling us much. However, have the following thought.

- The function f is not periodic but if we repeatedly copy its shape to the space outside of $(-\pi, \pi)$ then this extension, f^{*} is periodic with principle period of 2π.

We call this new function f^{*} the periodic extension of f with the property that $f^{*}(x)=f(x)$ for all $x \in(-\pi, \pi)$. Now, our goal is to search for a representation of f^{*} knowing that we will get $f \in L_{2}(-\pi, \pi)$ for free.

The Fourier Basis

Forgetting about $L_{2}(-\pi, \pi)$ for a second we ask the following question.

- Suppose that we have an arbitrary 2π-periodic function. What is a basis for the space of 2π-periodic functions?
Consider the following set of functions,

$$
\begin{equation*}
\{1, \cos (x), \sin (x), \cos (2 x), \sin (2 x), \cos (3 x), \sin (3 x), \ldots\}, \tag{6}
\end{equation*}
$$

which is called the Fourier basis. It can be shown these functions serve as a basis for all 2π-periodic functions with finite integral on their principle period. Thus, we now hope that,

$$
\begin{equation*}
f^{*}(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+b_{n} \sin (n x) \tag{7}
\end{equation*}
$$

The Main Result

We now have the problem of finding the coefficients a_{0}, a_{n}, b_{n}. Lucky for us the Fourier basis is an orthogonal basis. Using the orthogonality of the basis vectors we have our final result,

$$
\begin{equation*}
f \in L_{2}(-\pi, \pi) \Rightarrow f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+b_{n} \sin (n x), \tag{8}
\end{equation*}
$$

where

$$
\begin{align*}
& a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x \tag{9}\\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x \tag{10}\\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x, \tag{11}
\end{align*}
$$

which are sometimes called the Euler formulas.

