Homework #1 Solution:
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b) Note:

o [B,Al=BA—- AB=—(AB - BA) = —[A, B]
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Thus we only need to consider, (4,7) € {(1,2),(1,3),(2,3)}
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2. We begin by writing the 3 linear equations (3),(4),(5) as the augmented
matrix,
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Which corresponds to the row equivalent linear system,
x1 + 3302 =4

Letting x5 = ¢ implies that the general solution set is given by,
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With z; dependent on the one free variable xo
(%) parameterizes a 2-D line in 3-D space

3.
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corresponds to the linear system

(E1+35U2:2
(h—9zy =k—6

a) For this system to be consistent with a unique solution,

k
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r;?, assuming h — 9 # 0

thus h — 9 # 0 = h # 9 will yield no free variables and the linear system is
consistent with a unique point of intersection of the two lines.

b) For infinitely many solutions (for 25 to be a free variable) we require that
(h—9ze=k—60-20=0=>h=9,k=6
Thus z, is free.
c. For no solutions we require,
(h—=9zo=k—6<0-23=c,ceRN,c#0

This implies that h = 9 and & # 6. Thus the augmented column is a pivot
column and the system has no solutions.

4. We have the following augmented matrix representation of (1) and (2),
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which is equivalent to the linear system,
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Note, to do the division at (x) we have assumed that
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This is a common statement which places restriction on a,b,c,d.
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To determine if this is true we row reduce the augmented matrix,
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which corresponds to the linear system,

5r1 + 39 = 22
47x9 = 188
0-x9=1175 (%)

There is no x2 such that (x) can be satisfied. Thus, the linear system is incon-
sistent and b is not a linear combination of @; and d>.



