Homework \#1 Solution:
1.

Given

$$
\begin{aligned}
& \sigma_{1}=\sigma_{x}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \sigma_{2}=\sigma_{y}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \\
& \sigma_{3}=\sigma_{z}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad I=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
\end{aligned}
$$

a) $\quad \sigma_{1}^{2}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

$$
\begin{aligned}
\sigma_{2}^{2} & =\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]=\left[\begin{array}{cc}
-i^{2} & 0 \\
0 & -i^{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
\sigma_{3}^{2} & =\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

b) Note:

- $[B, A]=B A-A B=-(A B-B A)=-[A, B]$
- $\left[\sigma_{i}, \sigma_{i}\right]=\sigma_{i}^{2}-\sigma_{i}^{2}=0$

Thus we only need to consider, $(i, j) \in\{(1,2),(1,3),(2,3)\}$

$$
\begin{aligned}
{\left[\sigma_{1}, \sigma_{2}\right] } & =\sigma_{1} \sigma_{2}-\sigma_{2} \sigma_{1}= \\
& =\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]-\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right]= \\
& =\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right]-\left[\begin{array}{cc}
-i & 0 \\
0 & -i
\end{array}\right]=2 i\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=2 i \sigma_{3}
\end{aligned}
$$

and

$$
2 i \sum_{k=1}^{3} \epsilon_{12 k} \sigma_{k}=2 i \epsilon_{123} \sigma_{3}=2 i \sigma_{3}
$$

$$
\left[\sigma_{1}, \sigma_{3}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]-\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=
$$

$$
=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]-\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & -2 \\
2 & 0
\end{array}\right]=-2 i\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]=-2 i \sigma_{2}
$$

and

$$
2 i \sum_{k=1}^{3} \epsilon_{13 k} \sigma_{k}=2 i\left(\epsilon_{131} \sigma_{1}+\epsilon_{132} \sigma_{2}+\epsilon_{133} \sigma_{3}\right)=-2 i \sigma_{2}
$$

$$
\begin{aligned}
{\left[\sigma_{2}, \sigma_{3}\right] } & =\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]-\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]= \\
& =\left[\begin{array}{cc}
i & 0 \\
0 & i
\end{array}\right]-\left[\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right]=2 i\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right]=2 i \sigma_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { and } \\
& \sum_{k=1}^{3} \epsilon_{23 k} \sigma_{k}=2 i \epsilon_{131} \sigma_{1}=2 i \sigma_{1} \\
& 2 i \sigma_{3}=\left[\sigma_{1}, \sigma_{2}\right]=-\left[\sigma_{2}, \sigma_{1}\right]=-2 i \sum_{k=1}^{3} \epsilon_{21 k} \sigma_{k}= \\
& =-2 i \epsilon_{213} \sigma_{3}=2 i \sigma_{3}
\end{aligned}
$$

c) Similarly

$$
\begin{aligned}
\left\{\sigma_{i}, \sigma_{i}\right\} & =\sigma_{i}^{2}+\sigma_{i}^{2}=2 \sigma_{i}^{2}=2 I=2 I \delta_{i i}, \quad i=1,2, \ldots \\
\text { and } & \\
\left\{\sigma_{i}, \sigma_{j}\right\} & =\left\{\sigma_{j}, \sigma_{i}\right\} \\
\text { and } & \\
\left\{\sigma_{1}, \sigma_{2}\right\} & =\sigma_{1} \sigma_{2}+\sigma_{2} \sigma_{1}=0 \\
\left\{\sigma_{1}, \sigma_{3}\right\} & =\sigma_{1} \sigma_{3}+\sigma_{3} \sigma_{1}=0 \\
\left\{\sigma_{2}, \sigma_{3}\right\} & =\sigma_{2} \sigma_{3}+\sigma_{3} \sigma_{2}=0
\end{aligned}
$$

2. We begin by writing the 3 linear equations (3),(4),(5) as the augmented matrix,

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
6 & 18 & 1 & 20 \\
-1 & -3 & 8 & 4 \\
5 & 15 & -9 & 11
\end{array}\right] \begin{array}{l}
R 1 \rightarrow R 3 \\
R 3 \rightarrow R 2 \\
R 2 \rightarrow R 1
\end{array} \sim\left[\begin{array}{ccc|c}
-1 & -3 & 8 & 4 \\
5 & 15 & -9 & 11 \\
6 & 18 & -4 & 20
\end{array}\right] \sim} \\
& \sim \begin{array}{c}
R 2=5 R 1+R 2 \\
R 3=6 R 1+R 3
\end{array}\left[\begin{array}{ccc|c}
-1 & -3 & 8 & 4 \\
0 & 0 & 40-9 & 11+20 \\
0 & 0 & 44 & 44
\end{array}\right] \sim_{R 2=R 2 / 44}^{R 33=R 3 / 44} \\
& \sim R 1=-R 1\left[\begin{array}{ccc|c}
1 & 3 & -8 & -4 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] \sim^{R 3=R 3+R 2}\left[\begin{array}{lll|l}
1 & 3 & 8 & 4 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \sim \\
& \sim R 1=R 1+8 R 2\left[\begin{array}{lll|l}
1 & 3 & 0 & 4 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Which corresponds to the row equivalent linear system,

$$
\begin{gathered}
x_{1}+3 x_{2}=4 \\
x_{3}=1
\end{gathered}
$$

Letting $x_{2}=t$ implies that the general solution set is given by,

$$
(\star)=\begin{aligned}
& x_{1}=-3 t+4 \\
& x_{2}=t \\
& x_{3}=1
\end{aligned}, \quad t \in \Re
$$

With x_{1} dependent on the one free variable x_{2}
(\star) parameterizes a 2-D line in 3-D space
3.

$$
\left[\begin{array}{cc|c}
1 & 3 & 2 \\
3 & h & k
\end{array}\right] \sim^{R 3=R 3-3 R 1}\left[\begin{array}{cc|c}
1 & 3 & 2 \\
0 & h-9 & k-6
\end{array}\right]
$$

corresponds to the linear system

$$
\begin{array}{r}
x_{1}+3 x_{2}=2 \\
(h-9) x_{2}=k-6
\end{array}
$$

a) For this system to be consistent with a unique solution,

$$
(h-9) x_{2}=k-6 \Rightarrow x_{2}=\frac{k-6}{h-9}, \text { assuming } h-9 \neq 0
$$

thus $h-9 \neq 0 \Rightarrow h \neq 9$ will yield no free variables and the linear system is consistent with a unique point of intersection of the two lines.
b) For infinitely many solutions (for x_{2} to be a free variable) we require that

$$
(h-9) x_{2}=k-6 \Leftrightarrow 0 \cdot x_{2}=0 \Rightarrow h=9, k=6
$$

Thus x_{2} is free.
c. For no solutions we require,

$$
(h-9) x_{2}=k-6 \Leftrightarrow 0 \cdot x_{2}=c, c \in \Re, c \neq 0
$$

This implies that $h=9$ and $k \neq 6$. Thus the augmented column is a pivot column and the system has no solutions.
4. We have the following augmented matrix representation of (1) and (2),

$$
\begin{aligned}
& {\left[\begin{array}{ll|l}
a & b & f \\
c & d & g
\end{array}\right] } \sim_{R 1=a R 2-c R 1}^{R 1=d R 1-b R 2}\left[\begin{array}{cc|c}
a d-c b & b d-d b & d f-b g \\
a c-c a & a d-c b & d g-c f
\end{array}\right]= \\
&={ }^{(\star)}\left[\begin{array}{cc|c}
a d-c b & 0 & d f-b g \\
0 & a d-c b & a g-c f
\end{array}\right] \sim_{R 1=R 1 /(a d-c b)}^{R 2=R 2 /(a d-c b)}\left[\begin{array}{cc|c}
1 & 0 & \frac{d f-b g}{a d-c b} \\
0 & 1 & \frac{a g-c f}{a d-c b}
\end{array}\right]
\end{aligned}
$$

which is equivalent to the linear system,

$$
\begin{align*}
& 1 \cdot x_{1}+0 \cdot x_{2}=x_{1}=f r a c d f-b g a d-c b \\
& 0 \cdot x_{1}+1 \cdot x_{2}=\frac{a g-c f}{a d-c b}
\end{align*}
$$

Note, to do the division at (\star) we have assumed that

$$
a d-b c \neq 0
$$

This is a common statement which places restriction on a,b,c,d.
5. If $\vec{b}=\left[\begin{array}{c}22 \\ 20 \\ 15\end{array}\right]$ is a linear combination of the vectors, $\vec{a}_{1}=\left[\begin{array}{c}5 \\ -4 \\ 9\end{array}\right]$, $\vec{a}_{2}=\left[\begin{array}{c}3 \\ 7 \\ -2\end{array}\right]$ formed from the columns of $A=\left[\begin{array}{cc}5 & 3 \\ -4 & 7 \\ 9 & -2\end{array}\right]$ then there must exist $x_{1}, x_{2} \in \Re$ such that

$$
\vec{a}_{1} \cdot x_{1}+\vec{a}_{2} \cdot x_{2}=\vec{b} \Leftrightarrow \begin{aligned}
& 5 x_{1}+3 x_{2}=22 \\
& -4 x_{1}+7 x_{2}=20 \\
& 9 x_{1}-2 x_{2}=15
\end{aligned}
$$

To determine if this is true we row reduce the augmented matrix,

$$
\begin{array}{r}
{\left[\begin{array}{cc|c}
5 & 3 & 22 \\
-4 & 7 & 20 \\
9 & -2 & 15
\end{array}\right] \stackrel{\sim}{\sim} \begin{array}{r}
R 3=5 R 3-9 R 1 \\
R 2=5 R 2+4 R 1
\end{array}\left[\begin{array}{cc|c}
5 & 3 & 22 \\
0 & 47 & 188 \\
0 & -37 & -123
\end{array}\right] \sim} \\
\\
\sim R 3=47 R 3+37 R 2\left[\begin{array}{cc|c}
5 & 3 & 22 \\
0 & 47 & 188 \\
0 & 0 & 1175
\end{array}\right]
\end{array}
$$

which corresponds to the linear system,

$$
\begin{align*}
& 5 x_{1}+3 x_{2}=22 \\
& 47 x_{2}=188 \\
& 0 \cdot x_{2}=1175
\end{align*}
$$

There is no x_{2} such that (\star) can be satisfied. Thus, the linear system is inconsistent and \vec{b} is not a linear combination of \vec{a}_{1} and \vec{a}_{2}.

