
Reading assignment. Schroeder, section 3.3.

0.1 Heat

Once the equilibrium value of the parameter determining the state of the
combined system, such as UL in the last exercise, is found, we can calculate
various macroscopic properties of the system in equilibrium. For example,
for the mystery substance in the last exercise, the entropy was

S(U, V,N) = λV 1/2(NU)1/4 . (1)

Of course, the entropy itself follows, once U , V , and N are known, but we
also found an expression for the temperature:(

∂S

∂U

)
V,N

=
λV 1/2N1/4

4U3/4
=

1
T

, (2)

or

T =
4U3/4

λV 1/2N1/4
, (3)

where U = Ueq is the equilibrium value of the energy, and the value of T is
the same in both subsystems in equilibrium. As well, the amount of heat
transferred is obtainable directly from the final and initial energies of either
subsystem.

Consider now the entropy change accompanying a small energy change
with V and N fixed and with no other kinds of work done:

dS =
(

∂S

∂U

)
V,N

dU

=
1
T

dU .

(4)

In the absence of any work the energy change all arises from heat transfer:

dU = Q− p dV = Q , (5)

so the entropy change is just

dS =
Q

T
. (6)

This formally matches the original thermodynamic definition of entropy
due to Clausius, but the condition that no work is done will eventually be
seen to be more restrictive than necessary.

Now that expression gives changes in entropy only for fixed temperature,
and in most cases the temperature varies as heat is added. Exceptions in-
clude very large systems, which aren’t affected much if a little heat is added

1



or removed. If you add an ice cube to a lake, you can be sure it won’t af-
fect the temperature significantly. Also, systems undergoing certain kinds
of phase transitions can absorb or release heat without changing tempera-
ture, though there may be volume changes to take into consideration.

For the common case where the temperature is altered when heat is
added, it is most natural to take that into account by expressing the heat
transferred in terms of the heat capacity. Recall that we defined it generally
as

C =
Q

∆T
=

∆U −W

∆T
. (7)

Under constant-volume conditions the work vanishes, and we have simply

CV =
(

∂U

∂T

)
V,N

. (8)

With this, we can express the entropy change under constant-volume con-
ditions as

dS =
CV dT

T
. (9)

Of course, CV itself may vary with temperature, so the change in entropy
for a finite change in T requires us to leave CV inside the integral:

∆S =
∫ Tf

Ti

CV (T )
T

dT . (10)

This provides a way to determine changes in entropy between two states
of different temperature through experimental measurement of CV . That’s
a very important tool in classical thermodynamics, where the only way
to determine the entropy function is through measurements of macroscopic
properties, like CV . Of course, we only have a scheme for finding the change
∆S so far, so some sort of reference will be necessary. We’ll address that
shortly.

Example. Let’s try this out on the mystery substance from the last exer-
cise, for which we already have an explicit form for the entropy. We can use
that to find the heat capacity, then integrate to find changes in entropy. It’s
all circular, to be sure, but it gives us a little practice both in calculating
CV from entropy and in finding entropy changes from CV . As well, we can
close the circle at the end to show that we haven’t made any mistakes, but
I’ll leave that for an exercise.

Recall first the entropy:

S(U, V,N) = λV 1/2(NU)1/4 = γ(V,N)U1/4 , (11)

where the replacement γ = λV 1/2N1/4 will simplify later manipulations a
bit. The temperature is

T =

[(
∂S

∂U

)
V,N

]−1

=
4U3/4

λV 1/2N1/4
=

4
γ

U3/4 . (12)
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We can solve this to find the energy in terms of T , V , and N :

U =
(γ

4

)4/3

T 4/3 , (13)

and that can be used to find the heat capacity:

CV =
(

∂U

∂T

)
V,N

=
4
3

(γ

4

)4/3

T 1/3 = η(V,N)T 1/3 . (14)

As with γ, the substitution

η(V,N) =
4
3

(γ

4

)4/3

(15)

will save us some writing.
If we didn’t already know S(U, V,N), but we had available experimen-

tal measurements of CV (T, V,N) that had this functional form, we could
calculate the entropy change for any temperature change at fixed N and
V :

∆S =
∫ Tf

Ti

CV

T
dT

= η

∫ Tf

Ti

T−2/3 dT

= 3η(T 1/3
f − T

1/3
i ) .

(16)

While this ability to compute entropy changes from experimentally mea-
surable quantities makes it possible to define S(U, V,N) experimentally,
there remains an ambiguity. We can only discover ∆S this way, so it is
necessary to choose a reference point. That is resolved by the third law of
thermodynamics, also called Nernst’s law. It says simply:

lim
T→0

S = 0 , (17)

or in a form that more properly takes into account the natural dependence
of S on energy:

lim
U→Ugnd

S = 0 . (18)

That is, the entropy in the ground state vanishes. That makes good sense,
since the true ground state is unique, so it has multiplicity Ω = 1, leading
to S = k ln 1 = 0.

With that convention, we can find the entropy at any temperature above
T = 0 by

S =
∫ T

0

CV

T
dT , (19)

though it will be necessary to interrupt the integral wherever there is a
phase change in the material, since the heat capacity becomes infinite at
such points, allowing the entropy to increase discontinuously with T .
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HW Problem. Schroeder problem 3.10, p. 97.

HW Problem. Schroeder problem 3.11, p. 97.

HW Problem. Schroeder problem 3.14, p. 97.

Exercise. The mystery material of the last exercise, had

S = λV 1/2(NU)1/4 = γ(V,N)U1/4 , (20)

where we introduced
γ(V,N) = λV 1/2N1/4 (21)

to simplify later algebra. The temperature is given by

T =
(

∂S

∂U

)
V,N

=
4
γ

U3/4 , (22)

and the heat capacity is

CV =
(

∂U

∂T

)
V,N

=
4
3

(γ

4

)4/3

T 1/3 = η(V,N)T 1/3 , (23)

where

η(V,N) =
4
3

(γ

4

)4/3

. (24)

(a) Show that the entropy change given by

∆S =
∫ Tf

Ti

CV

T
dT (25)

is the same as the directly calculated change

∆S = S(Uf , V, N)− S(Ui, V, N) . (26)

(b) Calculate the entropy changes as equilibrium is achieved in the pre-
vious exercise. Key facts from that exercise:

NL = 1 mole NR = 2 moles

VL = 1 m3 VR = 1 m3

UL,i = 200 J UR,i = 400 J

UR,f = 21/3UL,f

UL,f =
UL,i + UR,i

21/3 + 1
=

3
21/3 + 1

UL,i .

(27)

Express ∆SL and ∆SR as multiples of SL,i, the initial entropy on the
left side. Verify that

∆Stot = ∆SL + ∆SR > 0 . (28)

Are ∆SL and ∆SR both positive? If not, is that OK?

[EOC, Fri. 2/10/2006, #14]

Reading assignment. Schroeder, section 3.4.
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0.2 The paramagnet revisited

Now we’ll explore in more detail the properties of the two-state paramag-
net, one of our toy systems. It’s actually much more than a toy, though,
since it is physically realizable to a good approximation. One of the prime
examples consists of a crystal lattice composed of atoms whose nuclei have
net magnetic moments that are weakly coupled to each other and very
weakly coupled to the lattice itself. This makes it possible for equilibrium
to be established among the magnetic moments much faster than between
the moment system and the lattice, and that makes it possible to explore
the rather curious properties of this system experimentally.

Recall that the magnetic moments in a two-state paramagnet arise from
the spins of particles, possibly electrons or particles in a nucleus. These
spin-1/2 particles have just two possible energy states in an external mag-
netic field, either aligned (“up”) with the magnetic field or antialigned
(“down”) with the field. The energy of a single moment is

E = −µ · B , (40)

and the quantization leads to just two possible energies E = ±µB:

+µB

B
−µB

B = 0 B 6= 0

E

0

µ

µ

The aligned (up) moments have lower energy than the antialigned moments.
Notice that the energies of the two alignments become equal as the strength
of the external magnetic field goes to zero, so we’ve chosen the zero of energy
to be that state, with the quantized energies in a nonvanishing field lying
symmetrically above and below that energy.

The total energy of a system of identical moments in an external field
is then

U =
∑

i

(±)iµB = µB(N↓ −N↑) . (41)

If the numbers of aligned and antialigned moments are not equal, the sys-
tems as a whole has a net magnetic moment and is said to be magnetized.
The net magnetic moment, or magnetization, is

M =
∑

i

(±)iµ = µ(N↑ −N↓) = nµ , (42)

where n = N↑−N↓ is the net number of aligned moments. As you can see,
the energy can be written in terms of the magnetization:

U = −MB = −nµB . (43)
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[EOC, Mon. 2/13/2006, #15; HW05 closed, due Mon. 2/20/2006]

6


	Heat
	The paramagnet revisited

