Homework \#2 Solution:

1. We have the polynomial

$$
p(t)=a_{0}+a_{1} t+a_{2} t^{2}
$$

and the data points $(1,12),(2,15),(3,16)^{(\star)}$. This generates 3 linear equations

$$
\begin{aligned}
p(1) & =a_{0}+a_{1}+a_{2}=12 \\
p(2) & =a_{0}+2 a_{1}+4 a_{2}=15 \\
p(3) & =a_{0}+3 a_{1}+9 a_{2}=16
\end{aligned}
$$

and the corresponding augmented matrix.

$$
\begin{gathered}
{\left[\begin{array}{lll|l}
1 & 1 & 1 & 12 \\
1 & 2 & 4 & 15 \\
1 & 3 & 9 & 16
\end{array}\right] \underset{R 2=R 2-R 1}{R 3=R 3-R 1}\left[\begin{array}{lll|c}
1 & 1 & 1 & 12 \\
0 & 1 & 3 & 3 \\
0 & 2 & 8 & 4
\end{array}\right]}
\end{gathered} \sim
$$

The row equivalent linear system is then,

$$
\begin{aligned}
& a_{0}=7 \\
& a_{1}=6 \\
& a_{2}=-1
\end{aligned}
$$

which implies that $p(t)=7+6 t-t^{2}$ is the quadratic polynomial which indicates (\star).
2. If $\vec{x}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}$ then the new vectors $A(\theta) \vec{x}$ will correspond to the vectors on the unit circle. A represents ridged (norm-preserving) rotations (counter clockwise) of $\vec{x} . A=\left[\begin{array}{cc}\cos (\theta) & \sin (\theta) \\ -\sin (\theta) & \cos (\theta)\end{array}\right]$ represents clockwise rotations.
3. $A=\left[\begin{array}{lll}3 & 6 & 7 \\ 0 & 2 & 1 \\ 2 & 3 & 4\end{array}\right]$ Determine A^{-1} via
a) calculate $\operatorname{det}(A)$.

$$
\begin{aligned}
\operatorname{det}(A) & =3 \operatorname{det}\left(\begin{array}{cc}
2 & 1 \\
3 & 4
\end{array}\right)-0 \cdot \operatorname{det}\left(\begin{array}{cc}
6 & 7 \\
3 & 4
\end{array}\right)+2 \operatorname{det}\left(\begin{array}{ll}
6 & 7 \\
2 & 1
\end{array}\right) \\
& =3(5)-0(3)+2(-8)=15 \cdot 16=-1
\end{aligned}
$$

b) The Gauss-Jordan Method

$$
\begin{aligned}
& {\left.\left[\begin{array}{lll|lll}
3 & 6 & 7 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 & 1 & 0 \\
2 & 3 & 4 & 0 & 0 & 1
\end{array}\right] \begin{array}{l}
R 1-3 R 2 \\
2 R 1-3 R 3
\end{array} \begin{array}{ccc|ccc}
3 & 0 & 4 & 1 & -3 & 0 \\
0 & 2 & 1 & & 0 & 10 \\
0 & 3 & 2 & 2 & 0 & -3
\end{array}\right] } \\
\sim & {\left[\begin{array}{lll|lll}
3 & 0 & 4 & 1 & -3 & 0 \\
0 & 2 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 4 & -3 & -6
\end{array}\right] \begin{array}{l}
R 1-4 R 3 \\
R 2-R 3
\end{array} .\left[\begin{array}{ccc|ccc}
3 & 0 & 0 & -15 & -9 & 24 \\
0 & 2 & 0 & -4 & 4 & 6 \\
0 & 0 & 1 & 4 & -3 & -6
\end{array}\right] \begin{array}{cc}
\div 3 \\
\div 2
\end{array} } \\
\sim & {\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & -5 & 3 & 8 \\
0 & 1 & 0 & -2 & 2 & 3 \\
0 & 0 & 1 & 4 & -3 & -6
\end{array}\right] \quad A^{-1}=\left[\begin{array}{ccc}
-5 & 3 & 8 \\
-2 & 2 & 3 \\
4 & -3 & -6
\end{array}\right] }
\end{aligned}
$$

c) The Cofactor Representation

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{lll}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33}
\end{array}\right]=\frac{1}{-1}\left[\begin{array}{ccc}
5 & -3 & 8 \\
2 & -2 & -3 \\
-4 & 3 & 6
\end{array}\right]=\left[\begin{array}{ccc}
-5 & 3 & 8 \\
-2 & 2 & 3 \\
4 & -3 & -6
\end{array}\right]
$$

d) Check your result by showing $A A^{-1}=I$

$$
A A^{-1}=\left[\begin{array}{lll}
3 & 6 & 7 \\
0 & 3 & 1 \\
2 & 3 & 4
\end{array}\right]\left[\begin{array}{ccc}
-5 & 3 & 8 \\
-2 & 2 & 3 \\
4 & -3 & -6
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=I
$$

4.

i. $\quad \operatorname{det}(A)=a d-b c$
ii. $\quad \operatorname{det}(B)=c b-a d=-(a d-b c)=-\operatorname{det}(A)$
iii. $\quad \operatorname{det}(D)=d(a+k c)-c(b+k d)=a d+k d c-c b-c d k=a d-b c=\operatorname{det}(A)$
iv. $\quad \operatorname{det}(C)=a d k-k c b=k(a d-b c)=k \cdot \operatorname{det}(A)$
$A \sim B$ by a row interchange and ii shows $\operatorname{det}(A)=-\operatorname{det}(B)$
$A \sim C$ by a row scaling and iv shows $\operatorname{det}(A)=k \cdot \operatorname{det}(C)$
$A \sim D$ by a row interchange where a multiple of one row is added to another. iii shows that $\operatorname{det}(A)=\operatorname{det}(D)$
5.

Forward Direction: Assume $A_{3 \times x}$ is such that $\operatorname{det}(A)=0$. then the volume of the parallelopiped spaned by $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}$ has zero volume. That is, the parallelopiped does not exist. This implies that all the vectors $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}$ lie in the same plane, and from a linearly dependent set. Thus, by the invertable matrix theorem A^{-1} does not exist.

Backward Direction: Assume A is not invertable. Then the columns of A are linearly dependent and $\operatorname{span}\left\{\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\right\}$ is at most (in terms of dimension) a plane which has zero volume and cannot form a parallelopiped. Thus, $\operatorname{det}(A)=0$.

