Homework #2 Solution:
1. We have the polynomial

p(t) = ag + ait + ast?

and the data points (1,12),(2,15), (3,16)*). This generates 3 linear equations
p(l) ap+ay +ag =12
p(2) = ap+2a1+4ay=15
p(3) = ap+3a; +9ay =16
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The row equivalent linear system is then,

a0:7
a1:6
a2=—1

which implies that p(t) = 7+ 6t —t? is the quadratic polynomial which indicates

(%)-

2.IfZ=[1 0 ]T then the new vectors A(0)Z will correspond to the vectors
on the unit circle. A represents ridged (norm-preserving) rotations (counter
cos(0)  sin(0)
—sin(0) cos(d)

clockwise) of . A = represents clockwise rotations.
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a) calculate det(A).

det(A) = 3det<§ i)O'det<§ Z>+2det<g I)



b) The Gauss-Jordan Method
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c¢) The Cofactor Representation
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= — Co1 C22 Co3 = — 2 -2 -3 = —2 2 3
dEt(A) C31 C32 C33 -1 —4 3 6 4 -3 —6
d) Check your result by showing AA~! =T
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4.
i det(A) = ad — bc
ii. det(B) = ¢b — ad = —(ad — bc) = —det(A)
iii. det(D) = d(a + ke) — ¢(b+ kd) = ad + kdc — cb — cdk = ad — be = det(A)
iv. det(C) = adk — keb = k(ad — be) = k - det(A)

A ~ B by a row interchange and ii shows det(A) = —det(B)

A ~ C by a row scaling and iv shows det(A) = k - det(C)

A ~ D by a row interchange where a multiple of one row is added to another.
iii shows that det(A) = det(D)

5.

Forward Direction: Assume Ajgy, is such that det(A) = 0. then the volume
of the parallelopiped spaned by @y, ds, d3 has zero volume. That is, the paral-
lelopiped does not exist. This implies that all the vectors dy, ds, d3 lie in the
same plane, and from a linearly dependent set. Thus, by the invertable matrix
theorem A~' does not exist.

Backward Direction: Assume A is not invertable. Then the columns of A are lin-
early dependent and span{dy,ds, ds} is at most (in terms of dimension) a plane
which has zero volume and cannot form a parallelopiped. Thus, det(A) = 0.



