LATEX Assignment 1

May 17, 2011

Create a new $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ file with the name username.tex (where username is your Mines Email ID) containing at first, the commands
\documentclass[letterpaper, 12pt]\{article\}, \begin\{document\}, and \end\{document\}. }
Also, within the preample of your document include the command

```
\usepackage[top=2.5cm, bottom=2.5cm, left=2cm, right=2cm]{geometry}
```

Reproduce each of the following within your .tex file (you need only reproduce items 1-4, including numbering, but not the surrounding directions and hints):

1. The derivative of the indirect function $f[g(x)]$ is $\{f[g(x)]\}^{\prime}=f[g(x)] g^{\prime}(x)$. For the second derivative of the product of $f(x)$ and $g(x)$ one has $[f(x) g(x)]^{\prime \prime}=f^{\prime \prime}(x) g(x)+2 f^{\prime}(x) g^{\prime}(x)+f(x) g^{\prime \prime}(x)$.
2. The reduced cubic equation $y^{3}+3 p y+2 q=0$ has one real and two complex solutions when $D=q^{2}+p^{3}>0$. These are given by Cardan's formula as

$$
y_{1}=u+v, y_{2}=-\frac{u+v}{2}+\frac{\mathrm{i}}{2} \sqrt{3}(u-v), y_{3}=-\frac{u+v}{2}-\frac{\mathrm{i}}{2} \sqrt{3}(u-v)
$$

where

$$
u=\sqrt[3]{-q+\sqrt{q^{2}+p^{3}}}, v=\sqrt[3]{-q-\sqrt{q^{2}+p^{3}}}
$$

3. Each of the measurements $x_{1}<x_{2}<\cdots<x_{r}$ occurs $p_{1}, p_{2}, \ldots, p_{r}$ times. The mean value and standard deviation are then

$$
x=\frac{1}{n} \sum_{i=1}^{r} p_{i} x_{i}, \quad s=\sqrt{\frac{1}{n} \sum_{i=1}^{r} p_{i}\left(x_{i}-x\right)^{2}}
$$

where $n=p_{1}+p_{2}+\cdots+p_{r}$.
4. Although this equation looks very complicated, it should not present any great difficulties:

$$
\int \frac{\sqrt{(a x+b)^{3}}}{x} \mathrm{~d} x=\frac{2 \sqrt{(a x+b)^{3}}}{3}+2 b \sqrt{a x+b}+b^{2} \int \frac{\mathrm{~d} x}{x \sqrt{a x+b}}
$$

The same applies to $\int_{-1}^{8}(\mathrm{~d} x / \sqrt[3]{x})=\frac{3}{2}\left(8^{2 / 3}+1^{2 / 3}\right)=15 / 2$.

Some hints on these

1. Higher derivatives are made with multiple 'symbols: $\$ \mathrm{y}{ }^{\prime}$ ' ${ }^{\prime} \$$ yields $y^{\prime \prime \prime}$.
2. Use \mathrm\{i\} to denote $\sqrt{-1}$
3. Use \backslash mathrm $\{\mathrm{d}\} \mathrm{x}$ to denote $\mathrm{d} x$
4. Using your favorite online search engine, investigate the $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ commands: int, ldots, \cdots, sqrt, and frac
5. You may want to try the last one in small chunks of $\mathrm{A}_{\mathrm{E}} \mathrm{EX}$ rather than trying to typeset all at once.
