1. Assume $A=\left[-\frac{1}{2}, \infty\right), B=\left[-\frac{1}{4}, \infty\right)$. Consider $f: A \rightarrow B$ defined by $f(x)=x^{2}+x, x \in A$.
2. Show that f does indeed map A into B, that is, show that if $x \in A$, then $f(x) \in B$.
3. Show that f is an injection.
4. Show that f maps A onto B, that is, show that for $y \in B$, there is an $x \in A$ such that $f(x)=y$. (For your choice of x, verify directly that $f(x)=y$)
5. Definition: If $S \subset R$ and $S \neq \varnothing$, then we say that S has a maximum if and only if there is a $y \in S$ such that $x \leq y$ for every $x \in S$.
Assume $n \in \mathbb{N}, S_{n} \subset \mathbb{R}$ and S_{n} has n elements, that is, $S_{n}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ where $a_{i} \in R$. Use mathematical induction on n to show that S_{n} has a maximum according to the definition given above.
6. Let $A=\mathbb{N} \times \mathbb{N}$, and define a relation R on A by

$$
(a, b) \sim(c, d) \Leftrightarrow a^{b}=c^{d}
$$

1. Show that R is an equivalence relation on A.
2. Find the equivalence class of $E_{(9,2)}$.
3. Find an equivalence class with exactly 2 elements.
4. Find an equivalence class with exactly 4 elements.
5. Suppose R is an equivalence relation on A, S is an equivalence relation on B, and $A \cap B=\varnothing$.
6. Prove that $R \cup S$ is an equivalence relation on $A \cup B$.
7. Prove that for all $x \in A,[x]_{R \cup S}=[x]_{R}$, and for all $y \in B,[y]_{R \cup S}=[y]_{S}$.
8. Prove that $(A \cup B) /(R \cup S)=(A / R) \cup(B / S)$.

Note: (A / R) is the set of all equivalence classes of A given the equivalence relation R.

