MATH 225 - Differential Equations
Homework 8, Field 2008
Homework 8, Field 2008
June 9 , 2008
Due Date: June 12, 2008

Laplace Transforms - Second-Order Linear Equations (revisited) - Forced Mass-Spring Systems

1. Calculate the Laplace transform of $f_{1}(t)=\sinh (a t)$ and $f_{2}(t)=\cosh (a t), a \in \mathbb{R}$.

Hint: You may want to refer to the previous homework assignment for the definitions of $\sinh (x)$ and $\cosh (x)$ or you might find it more efficient to note that $\sin (i x)=\sinh (x)$ and $\cos (i x)=\cosh (x)$ and repeat the calculations we did in class to find $\mathfrak{L}\{\cos (k t)\}$ and $\mathfrak{L}\{\sin (k t)\}$, which will find the transform of f_{1} and f_{2} simultaneously as both the real and imaginary parts of the transform integral. Doing it this way should make the standard form for these transforms, http://en.wikipedia.org/wiki/Laplace_transform\#Table_of_selected_ Laplace_transforms, make more sense.
2. Using the definition of transform show the following relationships:
(a) $\mathfrak{L}\left\{e^{a t} f(t)\right\}=F(s-a)$
(b) $\mathfrak{L}\left\{f(t-a) u_{a}(t)\right\}=e^{-a s} F(s), \quad a \geq 0$
(c) $\mathfrak{L}\left\{f(t) u_{a}(t)\right\}=e^{-a s} \mathfrak{L}\{f(t+a)\}, \quad a \geq 0$.
3. Consider the following second-order linear ordinary differential equation with constant coefficients,

$$
\begin{equation*}
a \frac{d^{2} y}{d t^{2}}+b \frac{d y}{d t}+c y=\delta(t), \quad y(0)=0, y^{\prime}(0)=0 \tag{1}
\end{equation*}
$$

Solve the IVP (1) for the following cases:
(a) $a=1, b=-2, c=-3$
(b) $a=1, b=4, c=4$
(c) $a=1, b=-4, c=13$
(d) $a=1, b=0, c=9$
4. Given the following forced simple harmonic oscillator.

$$
\begin{equation*}
2 \frac{d^{2} y}{d t^{2}}+8 y=6 \cos (\omega t), \quad y(0)=1, \quad y^{\prime}(0)=-1 \tag{2}
\end{equation*}
$$

(a) Set $\omega=1$ and find the solution to the initial value problem.
(b) Set $\omega=2$ and find the solution to the initial value problem.
(c) Describe the differences in the long term behavior of the steady-state solution for each oscillator
5. Again we investigate the forced mass spring system given by,

$$
\begin{equation*}
m \frac{d^{2} y}{d t^{2}}+b \frac{d y}{d t}+k y=f(t), \quad m, b, k \in R^{+} \cup\{0\} \tag{3}
\end{equation*}
$$

(a) Suppose we have that $b=0, y(0)=\alpha, y^{\prime}(0)=\beta$ and $f(t)=A \delta_{T}(t)$, show that the solution to (3) subject to these constraints is given by,

$$
\begin{equation*}
y(t)=\alpha \cos (\omega t)+\frac{\beta}{\omega} \sin (\omega t)+\frac{A}{m \omega} u_{T}(t) \sin (\omega(t-T)) \tag{4}
\end{equation*}
$$

where $\omega^{2}=\frac{k}{m}$.
(b) Suppose that we wish to hit the mass in such a way that after the impact the oscillations stop. Show that for this to occur we must choose,

$$
\begin{align*}
A & =\frac{\alpha m \omega}{\sin (\omega T)} \tag{5}\\
T & =\frac{1}{\omega} \arctan \left(-\frac{\alpha \omega}{\beta}\right) \tag{6}
\end{align*}
$$

