V. Absorption and emission of radiation jn
gases at high temperatures

§1. Introduction. Types of electronic transitions

It was shown in Chapter II that the light* absorption coefficient is the
fundamental optical characteristic of a gas which determines the degree of
blackness of a heated body, the spectral radiation intensity, and the energy
balance in a fluid undergoing radiant heat exchange. When the absorption
coefficient is known, Kirchhoff’s law, which is an expression of the general
principle of detailed balancing, may be used to determine the emission
coefficient of the fluid.

In §2 of Chapter IT we have presented a short review and classification of

e various mechanisms of absorption and emission. In accordance with the
general scheme of allowed energy states of atomic systems (the simplest of
which ‘consists of one proton and one electron and constitutes the hydrogen
atom in the bound state), all allowed electronic transitions accompanying the
absorption and emission of light are subdivided into three types. These are:

(1) free-free transitions (bremsstrahlung emission and absorption),j
(2) bound-free transitions (photoelectric absorption);
(3) bound-bound (discrete) transitions.

Free-free and bound-free transitions result in continuous absorption and
emission spectra. Bound-bound transitions in atoms result in line spectra,
while in molecules they result in the formation of band spectra. Band spectra

to one another that they
almost continuous (quasi-co
From an energy point of view continuous (quasi-continuous) spectra are
of primary interest. Let us imagine, for example, a body heated to a uniform
is perfectly black, then the radiation flux emitted
he Planck spectral distribution. The spectral flux
as a function of the frequency v is shown by the dashed curve in Fig. 5.1. The

* We recall that the terms “light”, “light quanta ”, “ photons , and “optical ” proper-
requencies and not just to those frequencies which lie in the
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§1. Introduction. Types of electronic transitions

Fig. 5.1. Emission spectrum of a heated body which is
continuous spectrum, but is opag

area bounded by this curve gives the integrated radiant energy emitted

per unit area of surface per unit time 67, Let us now assume that the medium
is perfectly transparent to the continuous spectrum and that it absorbs and

ere the line radiation for the given frequencies

lines whose height corresponds to the Planck function
by the solid curves. The inte

body surface per unit time is

» as shown in Fig. 5.1
grated radiant energy emitted per unit area of
numerically equal to the cross-hatched area of

hs are very narrow, this energy flux is consider-
ably lower than the integrated Planck flux o7, The radiant energy losses and

also the surface brightness are, in this case, considerably smaller than in the
case of a continuous spectrum. Similarly, for radiant energy transfer within
the body the line spectra are frequently of little importance in comparison
with that of continuous Spectra. Therefore, most of our attention in this
chapter will be devoted to continuous and quasi-continuous molecular
spectra, rather than to line spectra.
At high temperatures, when the molecules are dissociated and the gas
consists of atoms or (at even higher temperatures) of ions and electrons, the
nd emission spectra arise as a result of bound-free

and free-free transitions. The calculation of the electronic transition proba-
bilities, the results of which could then be used to find the absorption (and
emission) coefficient for the case of multi-electron atoms (complex atomic
systems), is a quantum-mechanical problem of considerable difficulty. This
problem requires a separate analysis for each particular case, for each atom

or ion, and also for each quantum state of the system. Such calculations have
been carried out only for a few particular cases,




B V. Absorption and emission of radiation in gases at high temperatures

Complete and relatively simple calculations can be carried out only for the
simplest hydrogen-like (hydrogenic) Systems, that is, for the transitions of a
single electron in the Coulomb field of a positive charge Ze, In bractice, even
when considering the emission and absorption of light in gases composed of
complex atoms or ions, it is frequently Dhecessary to use the relations derived
for hydrogen-like Systems. The atom or jon is in this case represented as an
“atomic remainder Wwith a positive point charge Ze, in the field of which an
“optical ” electron moves, undergoing transitions from one energy level to

ith the absorption or emission of a photon. As will be shown below,
imation is to Some extent justified in many cases of practical
importance,

In calculating molecular absorption coeflicients, the coeflicient is usually
determined as a function of frequency and temperature to within g factor
termed the oscillator strength for the electronic transition considered ; this
factor is determined experimentally, as a rule,

In the following sections of this ch
mechanisms of lig]
and the calculations

chanism. At the end of the chapter we shall consider the
radiative properties of high-temperature ajr as the most important practical
example illustrating the combined effect of many mechanisms.

1. Continuous spectra
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The radiant energy S emitted by an electron per unit time is determinad by
its acceleration w

5.1

The total radiation emitted during the entire time of travel past an ion is equal
to the time integral of this expression

2e2 ®

AE=f Sdt=% | war. 52
3¢ ),

-0 -

The spectral composition of the radiation may be found by expanding

the acceleration vector w in a Fourier integral and substituting the expansion
into (5.2). This yields

2,2 fo ]
AE = 167 S| wrdv= f S, dv, (5.3)
3 ) 0

where
1 =]
= 2—7: .
is the Fourier component of the acceleration vector w(¢). The quantity
1672 ¢2
S, = 33 w2 (5.4
represents the radiant energy per unit frequency interval* emitted with

a frequency v by an electron passing an ion.
According to classical mechanics, when energy losses by radiation are

w, w(1) e 2™ gy

Fig. 5.2. Trajectory of an electron
Ppassing a positive ion.

P

?

* Following astrophysical practice, we shall always use the ordinary frequency v rather
than the angular frequency w = 27y,
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absent, a free electron (the sum of
positive) passes the jon along a well
by the impact parameter p, the mean
total radiant energy and spectral co
lated approximately from equations

whose kinetic and potential energy is
-defined hyperbolic orbit characterized
ing of which is clear from Fig. 5.2. The
mposition of the radiation can be calcu-
(5.2)(5.9), by taking for the acceleration

Let a parallel beam of electrons wi
number density N, (the electron flux
Through an elementary ring of are
trons pass per unit time. Each elec

th initial velocity v at infinity and constant
is Nv) be incident on the ion from infinity.
a 2np dp about the jon N - 2mp dp elec-
tron emits AE ergs of energy. The radiant

q= f AE 2mp dp (erg - cm?). (5.5)
1]

We can also speak of the energy radiated in the frequency interval v to
v + dv, the so-called effective radiation dg, ({7~

( fv o dg, = q). In accordance with
the definition given by (5.3) the effective radiation, the energy emitted in-the
frequency interval dv per ion and per unit electron flux, is

dg, = dvf S,2np dp (erg - cm?). . (5.6)
(4]

The effective radiation determines the
due to bremsstrahlung emission.

If a unit volume contains N + ions of a particular species and dN, electrons
with speeds between v and v + dv, then the energy in the frequency interval
between v and v + dv emitted per unit time by a unit volume as a result of the
slowing down of these electrons jn the field of the ions is N +vdN, dy,
(erg/em? - sec). .

Let us estimate the effective radiation of electrons in the Coulomb field of
an ion. If the electron is at a distance r from the ion (radius vector r), then it is
subjected to the force —Ze?r/r®. The acceleration due to this force is w =
—~Zer/r’m, where m is the electron mass. Let the electron have an inijtia]
velocity v and impact parameter p with respect to the ion. The time during
which the force acts  is of the order of p/v, and the maximum acceleration
interval of the electron during this time wis of the order of Ze?/p?m. The prin-

cipal role in the expansion of the acceleration vector in the Fourier integral is
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played by frequencies v of the order of 1/2zt ~ v2np
frequency v is radiated mainly by the electrons passing

to v + dv are mainly
emitted by electrons with impact parameters in the interval dp ~ ©/27v?) dy ~

26 2 725

AE~-—wihnl 22
3c8 3 m?c33y
The effective radiation at the frequency v corresponds to the radiation

emitted by electrons with impact parameters from P to p+dp and from
the above relation is given by

AnZ%S dp  8n® 726
~ A NI~ e e . .
dg, ~ AE 2np dp 3 it~ 3 iy dv 5.7
The exact calculation of the effective radiation using (5.6) and (5.4), using
the acceleration vector found by solving the mechanical problem of the motion
of an electronin a hyperbolic orbit about an ion, is given in the book of Landau
and Lifshitz [1]. The result is

32n? 725 my?
dg, = 3‘\7-'-3. m dv for v> Z—RZE, (5.8)
32n Z2e6 mv3 mv?
=22 28 f Uy 5.9
da, 3 mPc3? In 1.787nvZe? dv or v< 2nZe? -9)

It is evident that the exact result at high frequencies differs from the simple
estimate (5.7) only by the numerical factor 4/\/5 = 2.3. At low frequencies the
exact result differs from the approximate one by a logarithmic factor which is
a function of the frequency, as well as by a numerical factor. To explain this
we note that-the low frequencies radiated come from distant collisions with
large impact parameters P; a8 v—0 and p- oo, the collisions with

accounted for in deriving the simple formula 6.7,

The divergence of the effective radiation in the low frequency range is
characteristic of a Coulomb field, which decreases slowly with distance; the
result is that distant collisions become of considerable importance. This
divergence can be eliminated by taking into account the screening effect,
which is always present in an actual ‘ionized gas. Actually, the integration

* For greater accuracy we shall retain the ny

merical coefficient 2. (The fundamental
role in the expansijon is played by the “ angular

frequencies such that wr ~ 1.)
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with respect to p in (5.6) should be ta
radius d; the radiation from th
Vesin ~ U/27d.

It should be noted, however, that the radiation i
trum g = f dg,

ken not to infinity but, say, to the Debye
e low frequency region is then cut off at

ntegrated over the spec-
converges in the low frequency region, since the divergence in

dq, is only logarithmic and the contribution of the peak value of dg, in the
integral with respect to v is not large as v — 0. Therefore, if we are interested
in the integrated radiation only

s then the question of cutting off the impact
parameters p from above and the frequencies from below is not too important.

In the classical theory, the high frequency radiation is independent of
frequency and the effective radiation per unit frequency interval dg,jdv
remains finite even as v — oo *. Formally, the integrated radiation g = f dq,
diverges in the high frequency region. This contradiction in the theory is a
result of the imperfection of the classical concepts about the motion of an
electron and is eliminated in the quantum theory. High frequencies, as we have
seen, are radiated when an electron with a small impact parameter passes an
ion. But, according to quantum-mechanical concepts, an electron having an
initial momentum p = mw cannot be located with greater precision than that
allowed by the uncertaipty principle Ar Ap ~ h/2r. Since the uncertainty in the
momentum cannot exceed the momentum itself, there is no point in dis-

cussing impact parameters smaller than p,,;, ~ h{2nmp. The maximum

frequency radiated for such minimum impact parameters is of the order of

Vimax ~ U/20p,5 ~ mv?/h. This upper limit to the emitted frequency has a
clear physical meaning. The quantum theory represents the bremsstrahlung
as follows. A free electron with an initial energy E = {mp? passing near an ion
can emit a photon hv. If the electron remains free after the emission, that is,
has a positive energy E’ upon moving away from the ion, then, obviously, the
electron cannot emit a photon whose €nergy exceeds the initial energy E.
Thus, v, = E/h = 3mv?/h, which coincides with the frequency limit allowed
by the uncertainty principle to within a factor of 1.

In quantum mechanics a free electron is represented by a plane wave and
the concept of the impact parameter does not have 3 precise meaning. We can
speak of the probability of emission of a photon of a particular frequency, or,
more precisely, about the cross section for the emission of photons with ener-
gies between hv and. kv + d(hv). The energy emitted in the frequency interval
dv per unit flux of electrons interacting with a single ion is equal to the product
of the photon energy hv and the emission cross section do,. This quantity
corresponds to the effective radiation of the classical theory

dq, = hv - do, (erg - cm?). (5.10)
* This is true only when the collidin

g particles are oppositely charged (an electron and a
positive ion). For the interaction between similarly charged particles dg.,Jdv->0 as v - o0,
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In the light of the correspondence principle, the effective radiation of
frequency v is related to the transition of an electron from one “stationary
hyperbolic orbit ”, corresponding to an electron energy E, to another,
corresponding to the energy E = E — py. The cross section do, and, conse-
quently, the effective radiation dyq, are calculated in quantum mechanics by .
the usual methods, using the matrix elements of the interaction energy
between the electron and the jon.

Before discussing the results of quantum-mechanical calculations of
bremsstrahlung emission, let us examine the limits of applicability of the
classical relations (5.8) and (5.9)and the conditions under which it is necessary
to replace these relations by quantum-mechanical ones, According to the
classical derivation, (5.8) is valid for high frequencies where v > mv3/2nZe?,
Of course, there is no point in extending the inequality beyond those fre-
quencies given by the upper limit Vmax = E/h = tmv*/h dictated by quantum-

mechanical epergy considerations, Let us rewrite the limits imposed upon the
frequency in (5.8) in the form

RVpex .~ By h mp?® hy
1= E B’ E21Ze " 7zZet" G-11)

The inequality hv/nZe? «< 1
but the condition for
(see [2], for example)

, except for a factor of 2, represents nothing else
quasi-classical motion of an electron in a Coulomb field

hv :
Sn7eE <1 (5.12)

Therefore, the classical formula (5.8) for the effective radiation at a fre-
quency v, limited from above and below by the inequalities (5.1 1), can be used
as an approximation for all electron velocities satisfying the inequality (5.12).
If the quasi-classical condition (5.12) is satisfied, then the region of applica-
bility of (5.8) extends down to very low frequencies, those for which hv/E ~
hv/nZe* < 1. Since the energies of the photons which are ordinarily of interest
are not too small in comparison with kT, in comparison with the energies of
the electrons, and since the contribution of the peak value to the integrated
radiation as v — 0 is not too large, (5.8) can be extended to v = 0 by replacing
it by (5.9). Thé divergence in dg, as v — 0 is thus formally eliminated.

Let us transform the quasi-classical condition (5.12), which is also the con-

dition of applicability of (5.8), s0 as to obtain the condition imposed upon the
energy of an electron

2 2\ 2 ‘ 2.2
E=T [ (2mZe\ 2 IZ*=135Z%ev,  (5.13)
h 2a,

= € —

2
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§2a
where ay = 2 /4n2me? s the Bohr radius, and Tu = 13.5 ev is the ionization
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g the quantum-mechanical result is usually written In order to

averaged over
Ymex(dg., dgq, ! This yields
Jquant = J:) (E)quant dv = (E)Classvmax f g dx = 1.05 9ctass »

0

as a function of the dimensionless

quantity x = hy/E = 1747
g1 which distinguishes the quantu

Pproximation requires that' both

* The Born a; the initial and final electron velocities
satisfy the conditions (5.12) and (5.13); otherwise o
an electron in a Coulomb field:

ne must use the exact wave functions of * For example
; this introduces the well-known Coulomb factor into the
resulting equations (see [2, 3]).
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Table 5.1

x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
&1 o  2.01 1.61 134 113 097 08] 068 053 036 o

Thus, the classical relation (5.8) gives satisfactory approximate results at
practically any nonrelativistic temperature.

§2a. Bremsstrahlung emission from an electron scattered by a nentral atom

We now calculate the effectiv

atom*, :

If wt, <1, the scattering takes place “instantaneously ”, and it is natural
to set the acceleration vector w(#) = Av 3(2), where Av is the change in the elec-
tron vector velocity on scattering and ¢ is the delta function. Then the Fourier
component of the acceleration vector is w

» = Av/2n. Substituting this expres-
sion into (5.4) we find that the energy radiated in the frequency interval from
v to v + dv upon scattering is

2
S, dv = ;% (AV)? dv.

This expression should be averaged over the scatteri
approximately that the absolute electron velocit
ciably on scattering, which corresponds
energies low in comparison with the
(Av)? = 20%(1 ~ cos 9), where cos § is the
ing angle.

In order to find the effective emissio

averaged over the scattering angle,
This yields

ng angle 9. Assuming
y v does not change appre-
to the emission of photons Ay with
electron energy mv*[2, we obtain

average of the cosine of the scatter-

0 we must multiply the quantity 3, dy,
by the scattering cross section o (cf. (5.6)).

2,2
dg,=8,dveo = g _e_”c_:ﬁ dv, (5.13a)

* For example, for red light A = 7000 A hv=18ev,and w
of the atom is 10~8 c¢m and the electron velocity is 108
Ty =10~ 15 ga¢ and wTy =027,

=2.7-10'* sec~1, If the radius
cm/sec (the energy is 3 ev), then




