Today: Hamiltonian staff
Wed : Finish, central forces
Last time: Pend. in accel. train

$$
\begin{aligned}
& \ddot{\theta}=\frac{-g}{L} \sin \theta+\frac{a}{L} \cos \theta \\
& \text { in eq. } \ddot{\theta}=\phi \rightarrow 0=\frac{-g}{L} \sin \theta_{e}+\frac{a}{L} \cos \theta_{e} \\
& \tan \theta_{e}=\frac{a}{\partial} . \\
& \text { If } I \operatorname{san} \theta=\theta_{e}+\alpha \\
& \ddot{\theta}=\frac{-g}{L}\left(\sin \theta_{c} \cos \alpha+\cos \theta_{c} \sin \alpha\right) \\
& +\frac{\pi}{2}\left(\cos \theta_{e} \cos \alpha-\sin \theta_{2} \sin \alpha\right) \\
& \frac{\ddot{\theta}}{\cos \theta_{1}}=-\frac{g}{2}(\tan \alpha p \cos \alpha+\sin \alpha) \\
& +\frac{h}{2}\left(\cos \alpha-\tan \theta_{e} \sin \alpha\right) \\
& r a / g \\
& -\frac{-g}{L} \sin \alpha-\frac{a^{2}}{g L} \sin \alpha \\
& \frac{\int_{0}^{50 \times 0} \mid}{8} a \\
& \ddot{\theta}-\frac{-\cos \theta_{e}}{g L}\left(a^{2}+g^{2}\right) \sin \alpha \\
& \ddot{\alpha}=(\ddot{(0 n c \mid c}) \ddot{\alpha}=\ddot{\theta}=\frac{\sqrt{a^{2}+g^{2}}}{L} \sin \alpha
\end{aligned}
$$

Back to theory:
In cartesian. coords?

$$
T=\frac{1}{2} \sum_{\alpha, i}^{n} m_{\alpha} \dot{x}_{\alpha i}^{2}
$$

n particles.
$i=1,2,3$ disedirus.
Transform to gen coordinates:

$$
\begin{aligned}
& x_{\alpha i}=x_{\alpha i}\left(q_{j}, t\right) \\
& \dot{x}_{\alpha i}=\sum_{j=1}^{s} \frac{\partial x_{\alpha i}}{\partial \sigma_{j}} \dot{\sigma}_{j j}+\frac{\partial x_{\alpha i}}{\partial t} \\
& \dot{x}_{\alpha i}^{2}=\sum_{j, k} \frac{\partial x_{\alpha i}}{\partial q_{j}} \dot{q}_{j i} \frac{\partial x_{\alpha i}}{\partial q_{\psi}} q_{p p}+2 \sum_{j} \frac{\partial x_{\alpha i}}{\partial q_{j}} \dot{q}_{j} \frac{\partial x_{i i}}{\partial t} \\
& +\left(\frac{\partial x_{0 i}}{\partial t}\right)^{2} \\
& T=\sum_{j, k} a_{j r} \dot{q}_{j} \dot{q}_{p}+\sum_{j} b_{j} \dot{\delta}_{j}+c \\
& a_{j n}=\frac{\partial x_{\alpha i}}{\partial q_{j}} \frac{\partial x_{\alpha i}}{\partial q_{k}} \\
& \left.b_{i}=\frac{\partial x_{\alpha}}{\partial \omega_{j}} \frac{\partial \alpha_{\alpha i}}{\partial t}\right\} c=
\end{aligned}
$$

If $\frac{\partial x_{\alpha}}{\partial \varepsilon_{i}}=\varnothing$: No explicit t dep in transform

$$
\rightarrow T=\sum_{j k} a_{j k} \underbrace{\dot{q}_{j} \dot{q}_{k}}_{o_{j} \mid y}
$$ $\dot{\varepsilon}_{j}$ show up in T.

$$
\begin{aligned}
& \frac{\partial T}{\partial \dot{q}_{g}}=\sum_{j k}\left(a_{j k} \delta_{j l} \dot{q}_{k}+a_{j k} \dot{q}_{j} \delta_{k l}\right) \\
& =\sum_{k} a_{k k} \dot{\delta}_{k}+\sum_{j} a_{i l} \dot{q}_{j} \quad \begin{array}{l}
a_{k n}=\text { ans } \\
\text { symmetric }
\end{array} \\
& \sum_{l} \dot{\sigma}_{g} \frac{\partial T}{\partial \dot{\sigma}_{g}}=2 \sum_{k l} a_{k r} \dot{\sigma}_{k} \dot{q}_{s}=2 T
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d L}{d t}=\sum_{i} \sum_{\frac{d}{d t}\left(\dot{q}_{i} \frac{\partial L}{\partial \dot{q}_{j}}\right)}^{\left(\frac{\partial L}{\partial q_{i}} \dot{q}_{j}+\frac{\partial L}{\partial \ddot{q}_{i}} \ddot{q}_{j}\right)}+\frac{\partial L}{\partial t} \\
& \frac{d L}{d t} \frac{d L}{\partial \dot{q}_{j}}=\frac{\partial L}{\partial q_{i}} \\
& \frac{\sum_{j} \frac{d}{d t}\left(\bar{q}_{i} \frac{\partial L}{\partial \dot{q}_{j}}\right)=\frac{\partial L}{\partial t}}{}\left(L-\sum_{i} \dot{q}_{i} \frac{\partial L}{\partial \dot{q}_{j}}\right)=\frac{\partial L}{\partial t}
\end{aligned}
$$

Define

$$
H \equiv \sum_{j} \dot{q}_{i} \frac{\partial L}{\dot{q}_{j}}-L=-\frac{\partial L}{\partial t}
$$

$\rightarrow \frac{d H}{d t}=-\frac{\partial L}{\partial t} \quad H$ is conserved if
L doesn't explicitly dep.
on time.
If u doesn't depend on \dot{q}_{j}

$$
\begin{aligned}
\frac{\partial L}{\partial \dot{q}_{j}}=\frac{\partial T}{\partial \dot{q}_{j}} \rightarrow H & =\sum_{\sum_{2 T}}^{\sum_{i} \frac{\partial T}{\partial q_{j}}}-T+u=-\frac{\partial L}{\partial t} \\
H & =T+U
\end{aligned}
$$

It is the total energy if crowd trans. are ind. of time and a does not depend on obj.

