Homework 13
PH462 EM Waves and Optical Physics
due 6 Dec. 2006 by 5pm
posted: 1 Dec. 2006

1) From the last HW: HM Problem 12-14.
2) A collimated laser beam with the following electric field profile is incident on a lens with focal length $f: E_{\text {in }}(r)=E_{0} \exp \left[-r^{2} / w^{2}\right]$. Use Cartesian coordinates to calculate the Fraunhofer diffraction pattern at the focal plane of the lens. Express the new spot radius as a function of the wavelength, f and w. The "radius" at the input and output is characterized by the radial distance to the $1 / e$ point of the field. You may neglect the truncation of the input field by the edges of the lens.
3) A beam is propagating inside a high-order mode of a rectangular waveguide with the field profile: $E(x, y)=E_{0} \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right)$
It leaves the waveguide and propagates in free space. Calculate the far-field intensity pattern using the Fraunhofer method. Compare the angles of the maxima of the pattern to the internal ray angles for the mode inside the waveguide.
