Nonlinear Optics Homework 2 due Wednesday, 9 Feb 2011

- Problem 1:

Boyd problem 2.1. For this problem, assume that "optimum focusing" means that the length of the crystal equals the confocal parameter ($2 x$ the Rayleigh range) of the lowest frequency beam. You don't need to account for focusing phase mismatch (we'll treat this later). Section 2.6 treats the case of upconversion.

- Problem 2: practice with polarization
- a. Consider 3 polarizers in sequence. Polarizers 1 and 3 are crossed, passing light polarized in the x and y directions, respectively. Calculate the transmission through the third polarizer as a function of the rotation angle of polarizer number 2, which is in between the other two.
- b. Find the eigenvectors and eigenvalues of the 2×2 rotation matrix. Relate the eigenvectors to polarization states and give a physical interpretation.
- c. A real waveplate that is made of a single piece of quartz ($n_{o}-n_{e}=0.009$) can be thick enough that the designer must aim for the desired phase retardation plus $\boldsymbol{m}^{*}(2 \pi)$, where \boldsymbol{m} is an integer. A zero-order waveplate is where $\boldsymbol{m}=0$.
- if the design wavelength is 800 nm , how thick should a zero-order half-wave plate be?
- what order would the waveplate be if the thickness is approximately 1 mm .
- another way to make the waveplate zero-order is to combine two waveplates with the optic axis of the second plate rotated 90° to the first. If each half of the waveplate is approximately 1 mm , calculate the exact thicknesses of the two halves of a zero order half waveplate.
- Problem 2:

The nonlinear crystal used for doubling the 3000 nm output of an optical parametric amplifier (OPA) is LilO_{3} (lithium iodate).

- a. Using the Phase_match_KDP.nb notebook as a template, code the dispersion equations for LiIO_{3} and calculate the variation of \boldsymbol{n}_{e} with angle $\boldsymbol{\theta}$ to the z-axis. The Sellmeier equations for LiIO_{3} are given in the datasheet posted online.
- b. Calculate the optimum phase matching angle for doubling 3000 nm light with Type I and Type II. If we changed the input wavelength to something shorter, what is the shortest input wavelength that can be phasematched?
- c. For both types of phase matching, plot the harmonic yield (intensity) as a function of incident angle for a few thicknesses. This shows the angular acceptance.
- d. For both types of phase matching, plot the harmonic yield as a function of input wavelength for three thicknesses. This shows the phase matching bandwidth.

