Homework 2

Due at the beginning of class Jan. 22

1. Derive the expression for $\nabla \cdot \hat{\Re} /|\vec{\Re}|^{2}$ for $\vec{\Re} \neq 0$, and $\vec{\Re}=\vec{r}-\overrightarrow{r^{\prime}}$ with \vec{r} locating an arbitrary field point for the source at $\overrightarrow{r^{\prime}}$. Use cartesian coordinates.
2. Derive an expression for the electric field at an arbitrary point from a uniformly charged arc of a circle of radius R (centered at the origin) which is in the $\mathrm{x}-\mathrm{y}$ plane of the cylindrical coordinate system. The segment of the circle goes from $\phi=0$ to $\phi=\pi / 2$.
3. A uniformly charged spherical shell of radius R and charge density σ has a small hole in it. What is the approximate electric field in the hole?
4. Shadowitz section 1-5 problem 10.
5. Verify the divergence theorem for the electric field from a spherical object or radius R which has charge density $\rho=\alpha r$ using a spherical surface with $r>R$.
6. Calculate the charge within a prism in which the charge density is given by $\rho=x y z^{2}$ while the prism is formed by a triangle in the xy plane extending up the z -axis to $\mathrm{z}=3$. One side of the triangle is along the x axis from 0 to 1 . Another side is along the y axis from 0 to 1 . The third side connects these two lines.
7. Two spherical cavities are hollowed out of a large spherical chunk of metal. A point charge is placed at the center of each cavity, one having charge q_{a} and the other q_{b}. Find the surface charges both within and on the ouside of this metal object.
8. Derive the expression for the reflected particle density for a stream of photons in one dimension reflecting from a moving mirror (see class notes). The incident photon density is $\lambda_{i n}$ and the mirror moves at constant speed V. (b) How does the calculation change if the mirror accelerates? (c) How does the calculation change if the model is for a stream of balls incident on the mirror (assume they can pass through each other)?
