Lecture: Eigenvalues and Eigenvectors Module: 07

Suggested Problem Set: $\{3,5,13,14,16,19,21\}$
Last Compiled : February 16, 2010

Quote of Lecture 7	
George Carlin: By and large, language is a tool for concealing the truth.	
	May 12, 1937 June 22, 2008

Okay, we know about $\mathbf{A x}=\mathbf{b}$, or if we don't then we have some places to look. Now we concentrate on a special version of this equation where $\mathbf{b}=\lambda \mathbf{x}, \lambda \in \mathbb{C}$ and we say that,

$$
\begin{equation*}
\mathbf{A} \mathbf{x}=\lambda \mathbf{x} \tag{1}
\end{equation*}
$$

is an eigenvalue-eigenvector problem for the square matrix $\mathbf{A}_{n \times n}$. Specifically, \mathbf{x} is called the eigenvector corresponding to the eigenvalue λ. If we think of \mathbf{A} as a linear transformation then λ is a measure of the transformation in the \mathbf{x}-direction. The set of all eigenvectors and their corresponding eigenvalues then provides yet another characterization of the transformation defined by \mathbf{A}.

Solving (1) is a two part process:

- Calculate the characteristic equation from,

$$
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0
$$

and find λ by solving for the roots of the polynomial. These roots are often called the spectrum of A and can be denoted at $\sigma(\mathbf{A})$.

- Determine a basis for the null space of,

$$
(\mathbf{A}-\lambda \mathbf{I})
$$

by solving $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=\mathbf{0}$. The basis vectors are eigenvectors associated with the particular λ used to calculate them. Sometimes, the collection of all eigenvectors is called an eigenbasis for \mathbf{A}.
If the eigenbasis of a matrix forms a basis for \mathbb{R}^{n} then many interesting properties can be deduced. If this occurs and the matrix is self-adjoint, $\mathbf{A}^{\mathrm{H}}=\mathbf{A}$, then one can show that the spectrum is purely real and that the eigenbasis forms an orthonormal basis for $\mathbb{R}^{n} .^{1}$

Lecture Goals

- Understand how the concept of linear rescaling is related to eigenvalue-eigenvector problems.
- Use previous concepts of linear algebra to deduce a method for calculating eigenvalues and eigenvectors.

Lecture Objectives

- Derive auxiliary equations needed to calculate eigenvalues and eigenvectors.
- Summarize 2×2 theory.
- Calculate the eigenbasis of various 'instructive' matrices.

[^0]
[^0]: ${ }^{1}$ This concept underpins the theoretical measurements of quantum particles and will be important in the study of physical PDE.

