4.2.12 (10 pts) Prove the following proposition:

For all sets A, B, and C that are subsets of some universal set, if $A \cap B=A \cap C$ and $A^{c} \cap B=A^{c} \cap C$, then $B=C$.

Proof. In order to show the set equality, we will show $B \subseteq C$ and $C \subseteq B$.
$\mathbf{B} \subseteq \mathbf{C}$: Let $b \in B$. Then either $b \in A$ or $b \notin A$
Case 1: $b \in A$ - Then $b \in A \cap B \Rightarrow b \in A \cap C \Rightarrow b \in C$. Thus, $B \subseteq C$.
Case 2: $b \notin A$ - Then $b \in A^{c} \Rightarrow b \in A^{c} \cap B \Rightarrow b \in A^{c} \cap C \Rightarrow b \in C$. Thus, $B \subseteq C$.
$\mathbf{C} \subseteq \mathbf{B}$: Let $c \in C$. Then either $c \in A$ or $c \notin A$
Case 1: $c \in A$ - Then $c \in A \cap C \Rightarrow c \in A \cap B \Rightarrow c \in B$. Thus, $C \subseteq B$.
Case 2: $c \notin A$ - Then $c \in A^{c} \Rightarrow c \in A^{c} \cap C \Rightarrow c \in A^{c} \cap B \Rightarrow c \in B$. Thus, $C \subseteq B$.
Therefore, we see in all cases $B \subseteq C$ and $C \subseteq B$. Thus $B=C$.
4.3.10 (10 pts) Let A and B be subsets of some universal set U. Prove or disprove each of the following:
a. $A-\left(A \cap B^{c}\right)=(A \cap B)$

Proof. Using properties of set operations, we have

$$
\begin{aligned}
A-\left(A \cap B^{c}\right) & =A \cap\left(A \cap B^{c}\right)^{c} \\
& =A \cap\left(A^{c} \cup B\right) \\
& =\left(A \cap A^{c}\right) \cup(A \cap B) \\
& =\varnothing \cup(A \cap B) \\
& =A \cap B
\end{aligned}
$$

e. $(A \cup B)-(A \cap B)=(A-B) \cup(B-A)$

Proof. Using properties of set operations, we have

$$
\begin{aligned}
(A \cup B)-(A \cap B) & =(A \cup B) \cap(A \cap B)^{c} \\
& =(A \cup B) \cap\left(A^{c} \cup B^{c}\right) \\
& =\left((A \cup B) \cap A^{c}\right) \cup\left((A \cup B) \cap B^{c}\right) \\
& =\left(\left(A \cap A^{c}\right) \cup\left(B \cap A^{c}\right)\right) \cup\left(\left(A \cap B^{c}\right) \cup\left(B \cap B^{c}\right)\right) \\
& =\left(\varnothing \cup\left(B \cap A^{c}\right)\right) \cup\left(\left(A \cap B^{c}\right) \cup \varnothing\right) \\
& =\left(B \cap A^{c}\right) \cup\left(A \cap B^{c}\right) \\
& =(B-A) \cup(A-B) \\
& =(A-B) \cup(B-A)
\end{aligned}
$$

4.4.8 (10 pts) Let A and B be nonempty sets. Prove that $A \times B=B \times A$ if and only if $A=B$.

Proof.
\Rightarrow : We will assume $A \times B=B \times A$ and show that $A=B$.
Let $a \in A$. Then for all $b \in B$,

$$
(a, b) \in A \times B \Rightarrow(a, b) \in B \times A \Rightarrow a \in B
$$

Thus $A \subseteq B$.
Similarly, for $b \in B$, for all $a \in A$,

$$
(b, a) \in B \times A \Rightarrow(b, a) \in A \times B \Rightarrow b \in A
$$

Thus, $B \subseteq A$ and we see that $A=B$.
\Leftarrow : We will assume $A=B$ and show that $A \times B=B \times A$.
Let $(a, b) \in A \times B$. Then for $a \in A \Rightarrow a \in B$ and for $b \in B \Rightarrow b \in A$.
Thus, $(a, b) \in B \times A \Rightarrow A \times B \subseteq B \times A$.
Similarly, for $(b, a) \in B \times A$, we also have $(b, a) \in A \times B$.
Thus, $B \times A \subseteq A \times B$ and therefore $A \times B=B \times A$.

Note: This proof, if worded carefully, can be shortened considerably.
\Rightarrow : Let $(a, b) \in A \times B \Leftrightarrow a \in A$ and $b \in B$.
Since $A \times B=B \times A,(a, b) \in B \times A \Rightarrow a \in B$ and $b \in A$. Thus, $A=B$.
$\Leftarrow:$ Since $A=B$, we have for all $a \in A$ and all $b \in B, a \in B$ and $b \in A$.
Thus for all $(a, b) \in A \times B,(a, b) \in B \times A$ and for all $(b, a) \in B \times A,(b, a) \in A \times B$.
Thus, $A \times B=B \times A$.

