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Dispersion in Optics

The dependence of the refractive index on wavelength has two

effects on a pulse, one in space and the other in time.

“Chirp”

d2n/d 2 

“Angular dispersion”

dn/d

Both of these effects play major roles in ultrafast optics.

Dispersion also disperses a pulse in time:

Dispersion disperses a pulse in space (angle):

vgr(blue) < vgr(red)
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Now,  is the same in or out of the medium, but k = k0 n, where k0 is
the k-vector in vacuum, and n is what depends on the medium.
So it's easier to think of  as the independent variable:

Using k  =   n( ) / c0, calculate:  dk /d  = ( n +  dn/d  ) / c0 

vg  =  c0 / ( n +  dn/d ) =  (c0 /n) / (1 +  /n dn/d  )

Finally:

So the group velocity equals the phase velocity when dn/d  = 0,
such as in vacuum.  Otherwise, since n usually increases with , dn/d

 > 0, and:
      vg  <  vphase.

Calculating the group velocity
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Use the chain rule : 

Now, , so :      

Recalling that :     

we have :             
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Calculating group velocity vs. wavelength

We more often think of the refractive index in terms of wavelength,

so let's write the group velocity in terms of the vacuum wavelength 0.
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The group velocity is less than the phase

velocity in non-absorbing regions.

       vg  =  c0  / (n +  dn/d )

Except in regions of anomalous dispersion (which are absorbing), dn/d

is positive, that is, near a resonance.  So vg < vphase for these frequencies!



Recall that the effect of a linear passive
optical device (i.e., lenses, prisms, etc.) on
a pulse is to multiply the frequency-domain
field by a transfer function:

˜ E out( ) = H ( ) ˜ E in( )

where H( ) is the transfer function
of the device/medium:

( ) ( ) exp[ ( )]
H H

H B i=

Since we also write E( ) = S( ) exp[-i ( )], the spectral phase of the
output light will be:

out( ) = H ( ) + in( ) We simply add 
spectral phases.

Spectral Phase and Optical Devices

Note that we CANNOT add the temporal phases!

out(t) H (t) + in(t)

H( )
˜ E in( ) ˜ E out( )

Optical device
or medium

exp[ ( ) / 2]L for a medium



The Group-Velocity Dispersion (GVD)

The phase due to a medium is:      ( ) =  n( ) k L = k( ) L 

To account for dispersion, expand the phase (k-vector) in a Taylor series:
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is the “group velocity dispersion.”
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The first few terms are all related to important quantities.
The third one is new: the variation in group velocity with frequency:



The effect of group velocity dispersion

GVD means that the group velocity will be different for different

wavelengths in the pulse.

vgr(blue) < vgr(red)

Because ultrashort pulses have such large bandwidths, GVD is a
bigger issue than for cw light.



Calculation of the GVD (in terms of wavelength)

Recall that:
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Okay, the GVD is:

Simplifying:
Units:
ps2/km or
(s/m)/Hz or 
s/Hz/m



Dispersion parameters for various materials



GVD in optical fibers 

Sophisticated cladding structures, i.e., index profiles have been

designed and optimized to produce a waveguide dispersion that

modifies the bulk material dispersion

Note that
fiber folks
define GVD
as the
negative of
ours.



GVD yields group delay dispersion (GDD).

We can define delays in terms of the velocities and the medium length L.

The phase delay:
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The group delay:

The group delay dispersion (GDD):
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so:

Units: fs2 or fs/Hz 

GDD = GVD L



Manipulating the phase of light

Recall that we expand the spectral phase of the pulse in a Taylor Series:
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So, to manipulate light, we must add or subtract spectral-phase terms.
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and we do the same for the spectral phase of the optical medium, H:

For example, to eliminate the linear chirp (second-order spectral phase),
we must design an optical device whose second-order spectral phase
cancels that of the pulse:

2 + H2 = 0
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group delay group delay dispersion (GDD)phase



Propagation of the pulse manipulates it.

Dispersive pulse

broadening

is unavoidable.

If 2 is the pulse 2nd-order spectral phase on entering a medium, and

k”L is the 2nd-order spectral phase of the medium, then the resulting

pulse 2nd-order phase will be the sum: 2 + k”L.

A linearly chirped input pulse has 2nd-order phase:

Emerging from a medium, its 2nd-order phase will be:
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(This result
pulls out the

 in the
Taylor
Series.)

A positively chirped pulse will broaden further;
a negatively chirped pulse will shorten.
Too bad material GDD is always positive in the visible and near-IR…

This result, with
the spectrum,
can be inverse
Fourier-
transformed to
yield the pulse.



So how can we generate negative GDD?

This is a big issue because pulses spread further
and further as they propagate through materials.

We need a way of generating negative GDD to
compensate.



Angular dispersion yields negative GDD.

Suppose that an optical element introduces angular dispersion.

We ll need to compute the projection onto the optic axis (the
propagation direction of the center frequency of the pulse).

Input
beam

Optical
element

Optic
axis

Here, there is negative
GDD because the blue
precedes the red.



Negative GDD
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Taking the projection of
onto the optic axis, a given
frequency  sees a phase
delay of ( ):
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We re considering only the GDD due to
dispersion and not that of the prism itself.
So n = 1 (that of the air after the prism).
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Angular dispersion yields negative GDD.

The GDD due to angular dispersion is always negative!

Also, note that it doesn t matter where the angular dispersion
came from (whether a prism or a grating).

And the negative GDD due to prism dispersion is usually much
greater than that from the material of the prism.



A prism pair has negative GDD.

How can we use dispersion to introduce negative chirp conveniently?

This term assumes

that the beam grazes 

the tip of each prism
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This term allows the beam 

to pass through an additional

length, Lprism, of prism material.

Assume Brewster

angle incidence

and exit angles.

Vary Lsep or Lprism to tune the GDD!

Lsep

Always

negative!

Always

positive (in

visible and

near-IR)



It’s routine to stretch and then compress ultrashort pulses by factors

of >1000.

Pulse Compressor

This device has negative group-delay dispersion and hence can
compensate for propagation through materials (i.e., for positive chirp).

The longer wavelengths

traverse more glass.



Note the unintuitive color variation of the pulse after the first prism.

To see the effect on a positively chirped pulse, read right to left!

What does the pulse look like inside a

pulse compressor?

If we send an unchirped pulse
into a pulse compressor, it
emerges with negative chirp.



Adjusting the GDD maintains alignment.

Any prism in the compressor can be translated perpendicular to the 
beam path to add glass and reduce the magnitude of negative GDD.

Remarkably, this does
not misalign the beam.

Output beamInput beam

The output path is
independent of prism

position.



The required separation between prisms
in a pulse compressor can be large.

It s best to use highly dispersive glass, like SF10, or gratings.
But compressors can still be > 1 m long.

Kafka and Baer, 
Opt. Lett., 12, 
401 (1987)

Different prism 
materials

Compression of a 1-ps,
600-nm pulse with 10
nm of bandwidth (to
about 50 fs).

The GDD      the prism separation and the square of the dispersion.



Four-prism pulse compressor

Fine GDD

tuning

Prism

Wavelength

tuning

Wavelength

tuning

Prism

Coarse GDD tuning

(change distance between prisms)

Wavelength

tuning

Wavelength

tuning

Prism

Prism

Also, alignment is critical, and many knobs must be tuned.

All prisms and their incidence angles must be identical.







Two-prism pulse

compressor

Prism

Wavelength tuning

Periscope

Wavelength

tuning

Prism

Coarse GDD tuning

Roof

mirror

Fine GDD

tuning

This design cuts the size and alignment issues in half.



Single-prism pulse compressor

Corner cube

Prism

Wavelength

tuning

GDD tuning

Roof

mirror

Periscope



Beam magnification is always one in

a single-prism pulse compressor!
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The total dispersion in a single-prism

pulse compressor is always zero!
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The dispersion

depends on the

direction through

the prism.

So the spatial chirp and pulse-front tilt are also identically zero!



Diffraction-grating pulse compressor

The grating pulse compressor also has negative GDD.

0

32

0

2 2 2 22 cos ( )

sepLd

d c d

Lsep
where d = grating spacing
(same for both gratings)

Grating #1

Grating #2

Note that, as in the prism
pulse compressor, the
larger Lsep, the larger
the negative GDD.



2nd- and 3rd-order phase terms for prism
and grating pulse compressors

Piece of glass

'' '''

Grating compressors offer more compression than prism compressors.

Note that the relative signs of the 2nd and 3rd-order terms are opposite
for prism compressors and grating compressors.



Compensating 2nd and 3rd-order spectral phase
Use both a prism and a grating compressor.  Since they have 3rd-order
terms with opposite signs, they can be used to achieve almost arbitrary 
amounts of both second- and third-order phase.

This design was used by Fork and Shank at Bell Labs in the mid 1980 s
to achieve a 6-fs pulse, a record that stood for over a decade.

input2 + prism2 + grating2 = 0

input3 + prism3 + grating3 = 0

Given the 2nd- and 3rd-order phases of the input pulse, input2 and input3, 
solve simultaneous equations:

Grating compressorPrism compressor



Pulse Compression Simulation

Resulting intensity vs. time 
with only a grating compressor:

Resulting intensity vs. time 
with a grating compressor
and a prism compressor:

Note the cubic 
spectral phase!

Brito Cruz, et al., Opt. Lett., 13, 123 (1988).

Using prism and grating pulse compressors vs. only a grating compressor



a [sin( m) – n sin( i)] = m

The (transmission)
grism equation is:

n



Chirped mirror coatings also yield

dispersion compensation.

Such mirrors
avoid spatio-
temporal
effects, but
they have
limited GDD.

Longest wavelengths
penetrate furthest.



Chirped mirror coatings

Longest
wavelengths
penetrate
furthest.

Doesn t work
for < 600 nm


