Abstract Vector Spaces, Bases and Coordinates, Matrix Spaces

Text: Chapter 4
Section Overviews: 4.1-4.6

Quote of Homework Six

Barron Münchausen:Your reality, sir, is lies and balderdash and I'm delighted to say that I have no grasp of it whatsoever.

The Adventures of Barron Münchausen : (1988)

1. Abstract Vector Spaces

1.1. Linear Ordinary Differential Equations. Verify that the set of all n-times continuously differentiable functions on $[a, b]$, which satisfies the homogeneous linear ordinary differential equation $L[y]=0$,

$$
V=\left\{y \in C^{(n)}[a, b]: L[y]=a_{n}(t) \frac{d^{n} y}{d t^{n}}+a_{n-1}(t) \frac{d^{n-1} y}{d t^{n-1}}+\cdots+a_{0}(t) y=0, \text { where } a_{0}, \ldots, a_{n} \in C[a, b]\right\}
$$

is a vector subspace of the vector space of all functions. ${ }^{1}$
1.2. Polynomial Subspaces. Prove that if H is the set of all polynomials up to degree n, such that $p(0)=0$, then H is a subspace of \mathbb{P}_{n}.
1.3. Function Subspaces. Prove that if $H=\{f \in C[a, b]: f(a)=f(b)\}$, then H is a subspace of $C[a, b]$.

2. Matrix Space

Given,
(1)

$$
\mathbf{A}=\left[\begin{array}{rrr}
-8 & -2 & -9 \\
6 & 4 & 8 \\
4 & 0 & 4
\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{rrrrr}
2 & -3 & 6 & 2 & 5 \\
-2 & 3 & -3 & -3 & -4 \\
4 & -6 & 9 & 5 & 9 \\
-2 & 3 & 3 & -4 & 1
\end{array}\right] .
$$

2.1. Column Space Verification. Is \mathbf{w} in the column space of \mathbf{A} ? That is, does $\mathbf{w} \in \operatorname{Col} \mathbf{A}$?
2.2. Null Space Verification. Is \mathbf{w} in the null space of \mathbf{A} ? That is, does $\mathbf{w} \in \operatorname{Nul} \mathbf{A}$?
2.3. Bases for Nul B. Determine a basis and the dimension of Nul B.
2.4. Bases for Col B. Determine a basis and the dimension of Col B.
2.5. Bases for Row B. Determine a basis and the dimension of Row B.

3. Theory

Prove the following statements:
3.1. Pivot Review. dim Row $\mathbf{A}+\operatorname{dim} \operatorname{Nul} \mathbf{A}=n$ where $\mathbf{A} \in \mathbb{R}^{m \times n}$.
3.2. More Pivoting. Rank $\mathbf{A}+\operatorname{dim} \operatorname{Nul} \mathbf{A}^{\mathrm{T}}=m$ where $\mathbf{A} \in \mathbb{R}^{m \times n}$.
3.3. Dimensional Arguments. $\mathbf{A x}=\mathbf{b}$ has a solution for each $\mathbf{b} \in \mathbb{R}^{m}$ if and only if the equation $\mathbf{A}^{\mathrm{T}} \mathbf{x}=\mathbf{0}$ has only the trivial solution. ${ }^{2}$
3.4. Spectral Properties of Transpositions. The characteristic polynomial of \mathbf{A} is equal to the characteristic polynomial of \mathbf{A}^{T}. ${ }^{3}$
3.5. Invertible Matrix Redux. If \mathbf{A} is an invertible matrix with eigenvalue λ then λ^{-1} is an eigenvalue of $\mathbf{A}^{-1} .4$

[^0]3.6. Invertible Diagonalization. If \mathbf{A} is both diagonalizable and invertible, then so is $\mathbf{A}^{-1} .{ }^{5}$
3.7. Transpositions if Diagonalization. If \mathbf{A} has n linearly independent eigenvectors, then so does $\mathbf{A}^{\text {T }}$. ${ }^{6}$

4. Change of Bases

The standard basis for \mathbb{R}^{2} are the column vectors, $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ of $\mathbf{I}_{2 \times 2}$. In class we looked at the basis $\mathfrak{B}=\left\{[1,1]^{\mathrm{T}},[-1,1]^{\mathrm{T}}\right\}$. This basis is rotated $\frac{\pi}{4}$ radians counter-clockwise from the standard basis and does not preserve the notion of length from the standard coordinate system.
4.1. Rotations Revisited. Determine a basis for \mathbb{R}^{2}, which is rotated $\frac{\pi}{4}$ radians counter-clockwise from the standard basis and preserves the unit length associated with the standard basis.
4.2. Orthogonal Coordinates. Show that, for this basis, the change-of-coordinates matrix $\mathbf{P}_{\mathfrak{B}}$ is such that, $\mathbf{P}_{\mathfrak{B}} \mathbf{P}_{\mathfrak{B}}^{\mathrm{T}}=\mathbf{P}_{\mathfrak{B}}^{\mathrm{T}} \mathbf{P}_{\mathfrak{B}}=\mathbf{I}_{2 \times 2}$.
4.3. Coordinate Changes. Given that $\left[\mathbf{x}_{1}\right]_{\mathfrak{B}}=[\sqrt{2}, \sqrt{2}]^{\mathrm{T}}$ determine \mathbf{x}_{1} and given that $\mathbf{x}_{2}=\left[\frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right]^{\mathrm{T}}$ determine $\left[\mathbf{x}_{2}\right]_{\mathfrak{B}}$. Calculate the magnitude of both of the vectors previously calculated.
4.4. Polynomial Spaces. The Hermite polynomials are a sequence of orthogonal polynomials, which arise in probability, combinatorics and physics. ${ }^{7}$ The first four polynomials in this sequence are given as,

$$
H_{0}(x)=1, \quad H_{1}(x)=2 x, \quad H_{2}(x)=-2+4 x^{2}, \quad H_{3}(x)=-12 x+8 x^{3}, \quad x \in(-\infty, \infty)
$$

4.5. Linear Independence. Show that $\mathfrak{B}=\left\{1,2 x,-2+4 x,-12 x+8 x^{3}\right\}$ is a basis for \mathbb{P}_{3}.

Hint: Determine the coordinate vectors of the Hermite polynomials relative to the standard basis.
4.6. Change of Basis. Let $\mathbf{p}(x)=7-12 x-8 x^{2}+12 x^{3}$. Find the coordinate vector of \mathbf{p} relative to \mathfrak{B}.

Hint: Determine $\left\{c_{0}, c_{1}, c_{2}, c_{3}\right\}$ such that $\mathbf{p}(x)=\sum_{i=0}^{3} c_{i} H_{i}(\mathrm{x})$.

[^1]
[^0]: ${ }^{1}$ The critical idea is to show that if $u, v \in V$ then $L\left[c_{1} u+c_{2} v\right]=0$ where $c_{1}, c_{2} \in \mathbb{R}$.
 ${ }^{2}$ For the forward direction use theorem 1.4.4 on page 43 and problem 3.3 to prove that the dimension of the null space of \mathbf{A}^{T} is zero.
 ${ }^{3}$ Note that I is a symmetric matrix then use rules for the transposition of a sum and determinants of transposes.
 ${ }^{4}$ Start with $\mathbf{A x}=\lambda \mathbf{x}$ and multiply on the left by \mathbf{A}^{-1}.

[^1]: ${ }^{5}$ Note that if \mathbf{D} is a diagonal matrix then \mathbf{D}^{-1} is the matrix whose diagonal elements are scalar inverses of the diagonal elements of \mathbf{D}.
 ${ }^{6}$ Use theorem 5.3.5 and the fact that if \mathbf{P} is invertible then $\left(\mathbf{P}^{\mathrm{T}}\right)^{-1}=\left(\mathbf{P}^{-1}\right)^{\mathrm{T}}$. It is also useful to note that diagonal matrices are symmetric.
 ${ }^{7}$ In physics these polynomials manifest as the spatial solutions to Schrödinger's wave equation under a harmonic potential, which evolves the probability distribution of a quantum mechanical particle near an energy minimum. As it turns out there are infinitely-many Hermite polynomials and consequently one can show that this particle has infinitely-many allowed quantized energy levels, which are evenly spaced. In probability they arise as different moments of a standard normal distribution.

