
MATH332-Linear Algebra Homework Six

Abstract Vector Spaces, Bases and Coordinates, Matrix Spaces

Text: Chapter 4 Section Overviews: 4.1-4.6

Quote of Homework Six

Barron Münchausen:Your reality, sir, is lies and balderdash and I’m delighted to say

that I have no grasp of it whatsoever.

The Adventures of Barron Münchausen : (1988)

1. Abstract Vector Spaces

1.1. Linear Ordinary Differential Equations. Verify that the set of all n-times continuously differentiable functions on [a, b], which

satisfies the homogeneous linear ordinary differential equation L [y] = 0,

V =

{
y ∈ C(n) [a, b] : L [y] = an(t)

dny

dtn
+ an−1(t)

dn−1y

dtn−1
+ · · ·+ a0(t)y = 0, where a0, . . . , an ∈ C [a, b]

}
,

is a vector subspace of the vector space of all functions.1

1.2. Polynomial Subspaces. Prove that if H is the set of all polynomials up to degree n, such that p(0) = 0, then H is a subspace of Pn.

1.3. Function Subspaces. Prove that if H = {f ∈ C [a, b] : f(a) = f(b)}, then H is a subspace of C [a, b].

2. Matrix Space

Given,

A =

 −8 −2 −9

6 4 8

4 0 4

 , w =

 2

1

−2

 , B =


2 −3 6 2 5

−2 3 −3 −3 −4

4 −6 9 5 9

−2 3 3 −4 1

 .(1)

2.1. Column Space Verification. Is w in the column space of A? That is, does w ∈ Col A?

2.2. Null Space Verification. Is w in the null space of A? That is, does w ∈ Nul A?

2.3. Bases for Nul B. Determine a basis and the dimension of Nul B.

2.4. Bases for Col B. Determine a basis and the dimension of Col B.

2.5. Bases for Row B. Determine a basis and the dimension of Row B.

3. Theory

Prove the following statements:

3.1. Pivot Review. dim Row A + dim Nul A = n where A ∈ Rm×n.

3.2. More Pivoting. Rank A + dim Nul At = m where A ∈ Rm×n.

3.3. Dimensional Arguments. Ax=b has a solution for each b∈ Rm if and only if the equation Atx =0 has only the trivial solution.2

3.4. Spectral Properties of Transpositions. The characteristic polynomial of A is equal to the characteristic polynomial of At. 3

3.5. Invertible Matrix Redux. If A is an invertible matrix with eigenvalue λ then λ−1 is an eigenvalue of A−1.4

1The critical idea is to show that if u, v ∈ V then L[c1u+ c2v] = 0 where c1, c2 ∈ R.
2For the forward direction use theorem 1.4.4 on page 43 and problem 3.3 to prove that the dimension of the null space of At is zero.
3Note that I is a symmetric matrix then use rules for the transposition of a sum and determinants of transposes.
4Start with Ax = λx and multiply on the left by A−1.
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2

3.6. Invertible Diagonalization. If A is both diagonalizable and invertible, then so is A−1.5

3.7. Transpositions if Diagonalization. If A has n linearly independent eigenvectors, then so does At. 6

4. Change of Bases

The standard basis for R2 are the column vectors, {e1, e2} of I2×2. In class we looked at the basis

B = {[1, 1]t, [−1, 1]t}. This basis is rotated π
4

radians counter-clockwise from the standard basis and does not preserve the notion of

length from the standard coordinate system.

4.1. Rotations Revisited. Determine a basis for R2, which is rotated π
4

radians counter-clockwise from the standard basis and preserves

the unit length associated with the standard basis.

4.2. Orthogonal Coordinates. Show that, for this basis, the change-of-coordinates matrix PB is such that, PBPt
B = Pt

BPB = I2×2.

4.3. Coordinate Changes. Given that [x1]B = [
√

2,
√

2]t determine x1 and given that x2 =

[
3√
2
,

3√
2

]t
determine [x2]B. Calculate the

magnitude of both of the vectors previously calculated.

4.4. Polynomial Spaces. The Hermite polynomials are a sequence of orthogonal polynomials, which arise in probability, combinatorics

and physics.7 The first four polynomials in this sequence are given as,

H0(x) = 1, H1(x) = 2x, H2(x) = −2 + 4x2, H3(x) = −12x+ 8x3, x ∈ (−∞,∞).

4.5. Linear Independence. Show that B = {1, 2x,−2 + 4x,−12x+ 8x3} is a basis for P3.

Hint: Determine the coordinate vectors of the Hermite polynomials relative to the standard basis.

4.6. Change of Basis. Let p(x) = 7− 12x− 8x2 + 12x3. Find the coordinate vector of p relative to B.

Hint: Determine {c0, c1, c2, c3} such that p(x) =
∑3
i=0 ciHi(x).

5 Note that if D is a diagonal matrix then D−1 is the matrix whose diagonal elements are scalar inverses of the diagonal elements of D.
6Use theorem 5.3.5 and the fact that if P is invertible then (Pt)−1 = (P−1)t. It is also useful to note that diagonal matrices are symmetric.
7In physics these polynomials manifest as the spatial solutions to Schrödinger’s wave equation under a harmonic potential, which evolves the

probability distribution of a quantum mechanical particle near an energy minimum. As it turns out there are infinitely-many Hermite polynomials and

consequently one can show that this particle has infinitely-many allowed quantized energy levels, which are evenly spaced. In probability they arise as

different moments of a standard normal distribution.
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