
Advanced Engineering Mathematics Homework Six

Differential Equations : Sturm-Liouville Problems, Power Series, Conservations Laws, PDE

Text: 5.1, 5.7, 12.1 Lecture Notes : ODE Review and 13 Lecture Slides: N/A

Quote of Homework Seven Solutions

You pick the place and I’ll choose the time and I’ll climb that hill in my own way. Just

wait a while, for the right day and as I rise above the treeline and the clouds I look down

and hear the sound of the things you said today.

Pink Floyd : Fearless - Meddle (1971)

1. Sturm-Liouville Problems

Recall the Sturm-Liouville eigenproblem given by,

Lu =
1

w(x)

„
− d

dx

»
p(x)

du

dx

–
+ q(x)u

«
= λu, λ ∈ C(1)

whose nontrivial eigenfunctions must satisfy the boundary conditions,

k1u(a) + k2u
′(a) = 0(2)

l1u(b) + l2u
′(b) = 0.(3)

1.1. Orthogonality of Solutions. Let (λ1, u1) and (λ2, u2) be two different eigenvalue/eigenfunction pairs. Show that u1 and u2 are

orthogonal. That is, show that 〈u1, u2〉 = 0 with respect to the inner-product defined by 〈f, g〉 =

Z b

a

f(x)g(x)w(x)dx.

Before we begin with this derivation we recall the following from linear algebra.

• If a square matrix is self-adjoint then it is possible to use its eigenvectors to form an orthogonal basis for Rn and using this basis

it is possible to construct the orthogonal diagonalization A = UDUh, where D ∈ Rn×n.

This can be distilled into,

• If A is self-adjoint then its eigenvalues are real and eigenvectors manifesting from different eigenvalues are orthogonal.

This is a terribly important result in the theory of linear algebra and generally the theory of linear transformations. We explore this result

in the context of linear differential operators given by (1)-(3). Though things will get a little intense I refer the reader back to the previous

bullet point for some modicum of comfort.

We need to show that eignfunctions arising from different eigenvalues are orthogonal under the abstract inner-product given in the

problem. First we now that for the previous eigenpairs we have from (1),1

(p(x)u1)′ + [λ1w(x)− q(x)]u1 = 0,(4)

(p(x)u2)′ + [λ2w(x)− q(x)]u2 = 0.(5)

If we multiply the first equation through by u2 and the second equation through by u1 then we have,

u2(p(x)u1)′ + u2 [λ1w(x)− q(x)]u1 = 0,(6)

u1(p(x)u2)′ + u1 [λ2w(x)− q(x)]u2 = 0.(7)

Subtracting these equations from each other gives,

u2(p(x)u1)′ − u1(p(x)u2)′ + u2λ1w(x)u1 − u1λ2w(x)u2 = 0 ⇐⇒(8)

u2(p(x)u1)′ − u1(p(x)u2)′ = [λ2 − λ1]w(x)u1u2.(9)

1We now work the following using Newton’s notation for derivative. It’s easier this way.
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Now, here is the first major trick. We must notice that,

d

dx

ˆ
p(x)

`
u2u

′
1 − u1u

′
2

´˜
= p′(x)

ˆ
u′2(x)u′1(x) + u2(x)u′′1 (x)− u′1(x)u′2(x)− u1(x)u′′2 (x)

˜
(10)

= u2(p(x)u1)′ − u1(p(x)u2)′,(11)

Thus if we integrate both sides of (9) from a to b we have that,Z b

a

u2(p(x)u1)′ − u1(p(x)u2)′dx =

Z b

a

d

dx

ˆ
p(x)

`
u2u

′
1 − u1u

′
2

´˜
dx(12)

= p(b)
`
u2(b)u′1(b)− u1(b)u′2(b)

´
− p(a)

`
u2(a)u′1(a)− u1(a)u′2(a)

´
(13)

The second major trick is to show that this quantity is zero because of (2)-(3). A dint of algebra shows that,

p(b)
`
u2(b)u′1(b)− u1(b)u′2(b)

´
= p(b)

„
−u2(b)u1(b)I1

I2
+
I1u1(b)u2(b)

I2

«
(14)

= 0.(15)

A similar statement holds for the lower-bound. Lastly, we note that from the previous steps we have that,

[λ2 − λ1]

Z b

a

w(x)u1(x)u2(x)dx = 0.(16)

Since λ1 6= λ2 we conclude that, Z b

a

w(x)u1(x)u2(x)dx = 0,(17)

which implies that eigenfunctions associated with different eigenvalues are orthogonal with respect to the inner-product,

〈f, g〉 =

Z b

a

f(x)g(x)w(x)dx.(18)

We have seen this result before. Recall that in homework 3 we studied this equation for p(x) = w(x) = 1 and q(x) = 0 and found cosine

solutions that were orthogonal with respect to the same inner-product. This orthogonal structure is quite general and the Fourier series is

just one manifestation. There are infinitely many others! Some are useful but some are not.

1.2. Bessel’s Equation. Show that if p(x) = x, q(x) = ν2/x and w(x) = x/λ then (1) becomes x2u′′ + xu′ + (x2 − ν2)u = 0, which is

known as Bessel’s equation of order ν.

We have from (1) that,

Lu =
λ

x

„
− d

dx

»
x
du

dx

–
+
ν2

x
u

«
(19)

= −λ
x

„
xu′′ + u′ − ν2

x
u

«
= λu(20)

⇐⇒ xu′′ + u′ +

„
x− ν2

x

«
u = 0(21)

⇐⇒ x2u′′ + xu′ +
`
x2 − ν2´u = 0,(22)

which agrees with the given equation. See EK.5.5pg198 for an investigation of this equation.

1.3. Fourier Bessel Series. A solution to Bessel’s equation is for ν = n ∈ N,

Jn(x) = xn
∞X
m=0

(−1)mx2m

22m+nm!(n+m)!
, n = 1, 2, 3, . . .(23)

which is called Bessel’s function of the first-kind of order n. Since these functions manifest from a SL problem they naturally orthogonal

and have an orthogonality condition,

〈Jn(xkn,m), Jn(xkn,i)〉 =

Z R

0

xJn(xkn,m)Jn(xkn,i)dx =
δmi
2

[RJn+1(knmR)]2 .(24)

Using this show that the coefficients in the Fourier-Bessel series,

f(x) =

∞X
m=1

amJn(kn,mx),(25)
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are given by,

ai =
2

R2J2
n+1(kn,iR)

Z R

0

xJn(kn,iR)f(x)dx, i = 1, 2, 3, . . .(26)

We will explicitly find these solutions in class but the practical matter is how to use them. If someone provides the functions and orthogonality

condition then we can cavalierly expand in this basis. 2 Before we do this we should notice,

• The relation (24) implies that the orthogonality is on the argument not the specific Bessel function in question. That is, we have

infinitely many Bessel functions forming a class indexed by the integer n and the functions in the class are mutually orthogonal.

This is seen by the the fact that the Kronecker delta function has index (m, i) and not (m,n).

We now proceed, as usual, by considering an appropriately chosen inner-product on (25).3 Doing so gives,

〈Jn(km,ix), f(x)〉 =

*
Ji(km,ix),

∞X
m=1

amJn(kn,mx)

+
(27)

=

∞X
m=1

am 〈Jn(km,ix), Jn(kn,mx)〉(28)

=

∞X
m=1

am
δmi
2

[RJn+1(knmR)]2(29)

= ai
δii
2

[RJn+1(kniR)]2 ,(30)

which implies that,

ai =
2

[RJn+1(kniR)]2
〈Jn(km,ix), f(x)〉(31)

=
2

[RJn+1(kn,iR)]2

Z R

0

xf(x)Jn(km,ix)dx.(32)

2. Power-Series Solutions to ODE’s and Hyperbolic Trigonometric Functions

Consider the ordinary differential equation:

y′′ − y = 0(33)

2.1. General Solution - Standard Form. Show that the solution to (33) is given by y(x) = c1e
x + c2e

−x.

You could derive this solution from (33) but the beauty of a differential equation is that you can always check.

y′′ − y = c1e
x + (−1)2c2e

−x − c1ex + c2e
−x = 0.(34)

2.2. General Solution - Nonstandard Form. Show that y(x) = b1 sinh(x) + b2 cosh(x) is a solution to (33) where sinh(x) =
ex − e−x

2

and cosh(x) =
ex + e−x

2
.

First we notice the derivative relations on the hyperbolic trigonometric functions,

y(x) = b1 sinh(x) + b2 cosh(x),

y′(x) = b1 cosh(x) + b2 sinh(x),

y′′(x) = b1 sinh() + b2 cosh(x),

which then gives,

y′′ − y = b1 sinh(x) + b2 cosh(x)− (b1 sinh(x) + b2 cosh(x)) = 0,(35)

and shows that this is also a solution to (33).

2You should remember that you could owe some mathematician money at this point but hey a trade is a trade.
3See HW2.5.4 for a reminder.
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2.3. Conversion from Standard to Nonstandard Form. Show that if c1 =
b1 + b2

2
and c2 =

b1 − b2
2

then y(x) = c1e
x + c2e

−x =

b1 cosh(x) + b2 sinh(x).

Direct substitution gives,

y(x) = c1e
x + c2e

−x,

=

„
b1 + b2

2

«
ex +

„
b1 − b2

2

«
e−x,

=
b1(ex + e−x)

2
+
b2(ex − e−x)

2
,

= b1 cosh(x) + b2 sinh(x),

which shows the two solutions are equivalent.

2.4. Relation to Power-Series. Assume that y(x) =

∞X
n=0

anx
n to find the general solution of (33) in terms of the hyperbolic sine and

cosine functions. 4

Assume that y(x) =

∞X
n−0

anx
n and find the general solution of (33). First, we have the following derivative relations.

y(x) =

∞X
n=0

anx
n(37)

y′(x) =

∞X
n=0

an(n)xn−1(38)

y′′(x) =

∞X
n=0

an(n)(n− 1)xn−2.(39)

Thus the ODE is now,

y′′ − y =

∞X
n=0

an(n)(n− 1)xn−2 −
∞X
n=0

anx
n(40)

=

∞X
k=0

ak+2(k + 2)(k + 1)xk −
∞X
k=0

akx
k(41)

=

∞X
k=0

[ak+2(k + 2)(k + 1)− ak]xk = 0.(42)

The only polynomial, which is zero regardless of its variable is the zero-function. This defines the recurrence relation,

[ak+2(k + 2)(k + 1)− ak] = 0, for k = 1, 2, 3, . . . .(43)

We now write down ak+2 in terms of ak,

ak+2 =
ak

(k + 2)(k + 1)
, for k = 1, 2, 3, . . . ,(44)

and try to find a pattern by choosing various k. Since the recurrence relation relates a coefficient to the coefficient two away it splits the

coefficients into even and odd patterns.

4The hyperbolic sine and cosine have the following Taylor’s series representations centred about x = 0,

cosh(x) =
∞X
n=0

x2n

(2n)!
sinh(x) =

∞X
n=0

x2n+1

(2n+ 1)!
.(36)

It is worth noting that these are basically the same Taylor series as cosine/sine with the exception that the signs of the terms do not alternate. From

this we can gather a final connection for wrapping all of these functions together. If you have the Taylor series for the exponential function and extract

the even terms from it then you have the hyperbolic cosine function. Taking the hyperbolic cosine function and alternating the sign of its terms gives

you the cosine function. Extracting the odd terms from the exponential function gives the same statements for the hyperbolic sine and sine functions.

The reason these functions are connected via the imaginary number system is because when i is raised to integer powers it will produce these exact sign

alternations. So, if you remember ex =
P∞
n=0 x

n/n! and i =
√
−1 then the rest (hyperbolic and non-hyperbolic trigonometric functions) follows!
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Even Coefficients Odd Coefficients

a2 =
a0

2 · 1 a3 =
a1

3 · 2 · 1

a4 =
a4

4 · 3 =
a0

4 · 3 · 2 · 1 a5 =
a3

5 · 4 =
a1

5 · 4 · 3 · 2 · 1

...
...

a2k =
a0

(2k)!
a2k+1 =

a1

(2k + 1)!

The last entries are the generalization of the pattern where the following are noticed:5

(1) The even coefficients all re-curse back to a0 and the odd coefficients recurse back to a1. Nothing more can be said about these two

coefficients.

(2) As the recursion is applied a product forms in the denominator. This product is precisely the factorial of the coefficient’s subscript.

Using this information we now have the following,

y(t) =

∞X
n=0

anx
n(45)

=

∞X
n=0

a2nx
2n +

∞X
n=0

a2n+1x
2n+1(46)

= a0

∞X
n=0

x2n

(2n)!
+ a1

∞X
n=0

x2n+1

(2n+ 1)!
(47)

= a0 cosh(x) + a1 sinh(x),(48)

3. Conservation Laws in One-Dimension

Recall that the conservation law encountered during the derivation of the heat equation was given by,

∂u

∂t
= −κ∇φ,(49)

which reduces to

∂u

∂t
= −κ∂φ

∂x
, κ ∈ R(50)

in one-dimension of space.6 In general, if the function u = u(x, t) represents the density of a physical quantity then the function φ = φ(x, t)

represents its flux. If we assume the φ is proportional to the negative gradient of u then, from (50), we get the one-dimensional heat/diffusion

equation (??).7

3.1. Transport Equation. Assume that φ is proportional to u to derive, from (50), the convection/transport equation, ut+cux = 0 c ∈ R.

5A generalized pattern is not always possible to find. However, it should be noted that once the recursion relation is found the job is done. Every

coefficient can be known in terms of ones that precede connecting coefficients to a0 and/or a1. These originators are actually the same as the unknown

constants c1 and c2 found in the homogeneous solution and can be found via initial conditions. Thus, initial conditions will allow the evaluation of the

infinite series to arbitrary decimal precision, which is good enough for tunnel work, as they say.
6When discussing heat transfer this is known as Fourier’s Law of Cooling. In problems of steady-state linear diffusion this would be called Fick’s

First Law. In discussing electricity u could be charge density and q would be its flux.
7AKA Fick’s Second Law associated with linear non-steady-state diffusion.
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Assume that φ is proportional to u, to derive the convection/transport equation ut + cux = 0

φ = αu

∂φ

∂x
= α

∂u

∂x
∂u

∂t
= −k ∂Q

∂x
⇒ ∂u

∂t
= −αk∂u

∂x
⇒ ut + cux = 0

3.2. General Solution to the Transport Equation. Show that u(x, t) = f(x− ct) is a solution to this PDE.

From u(x, t) = f(x− ct) we have that, ut = −cf ′(x) and ux = f ′(x) which gives

ut + cux = −cf ′(x) + cf ′(x) = 0.(51)

Thus the travelling wave f(x− ct) is a general solution to the transport equation.

3.3. Diffusion-Transport Equation. If both diffusion and convection are present in the physical system then the flux is given by,

φ(x, t) = cu− dux, where c, d ∈ R+. Derive from, (50), the convection-diffusion equation ut + cux − duxx = 0.

∂φ

∂x
= c

∂u

∂x
− d∂

2u

∂x2

∂u

∂t
= −k ∂φ

∂x
⇒ ∂u

∂t
= −c∂u

∂x
+ d

∂2u

∂x2

⇒ ut + cux − duxx = 0

3.4. Convection-Diffusion-Decay. If there is also energy/particle loss proportional to the amount present then we introduce to the

convection-diffusion equation the term λu to get the convection-diffusion-decay equation,8

For ut = −λu where λ ≥ 0 we have decay. Including this additively in the previous equation gives, ut = duxx − cux − λu = 0, which is

the convection-diffusion-decay equation.

3.5. General Importance of Heat/Diffusion Problems. Given that,

(52) ut = Duxx − cux − λu.

Show that by assuming, u(x, t) = w(x, t)eαx−βt, (52) can be transformed into a heat equation on the new variable w where α = c/(2D)

and β = λ+ c2/(4D).9

Assume that u(x, t) = w(x, t)eαx−βt and show that (a) can be transformed into a heat equation on the variable w where α = c
2D

and

β = λ+ c2

4D

ut = wte
αx−βt + wβeαx−βt

ux = wxe
αx−βt + wαeαx−βt

uxx = wxxe
αx−βt + 2wxαe

αx−βt + wα2eαx−βt

ut = Duxx − cux − λu

wte
αx−βt − wβeαx−βt = Dwxxe

αx−βt +D2wxαe
αx−βt +Dwα2eαx−βt −

−cwxeαx−βt − cwαeαx−βt − λweαx−βt

⇒ wt − βw = Dwxx + 2Dαwx +Dwα2 − cwx − cαw − λw

wt = Dwxx + (2Dα− c)wx + (β − cα+Dα2 − λ)w

wt = Dwxx + 2D
“ c

2D
− c
”
wx +

„
λ+

c2

4D
− c2

2D
+
Dc2

4D2

«
w

wt = Dwxx ← heat equation on variable w

8The uxx term models diffusion of energy/particles while ux models convection, u models energy/particle loss/decay. The final term should not be

surprising! Wasn’t the appropriate model for radioactive/exponential decay Y ′ = −α2Y ?
9This shows that the general PDE (52) can be solved using heat equation techniques.
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4. Some Solutions to common PDE

Show that the following functions are solutions to their corresponding PDE’s.

4.1. Right and Left Travelling Wave Solutions. u(x, t) = f(x− ct) + g(x+ ct) for the 1-D wave equation.

First we note the derivative relations.

∂u

∂t
= −cf ′ + cg′,

∂2u

∂t2
= c2f ′′ + c2g′′,

∂u

∂x
= f ′ + g′,

∂2u

∂x2
= f ′′ + g′′.

Thus,

utt − c2uxx = c2(f ′′ + g′′)− c2(f ′′ + g′′) = 0,(53)

implies that the linear combination of right and left traveling waves is a general solution to the 1-D wave equation. An importance

consequence of this fact is that phenomenon modeled by this equation must have a finite-speed of propagation. This may seem like common

sense however, there are phenomenon modeled by equations which propagate data at infinite speeds! The heat equation is one such example.

4.2. Decaying Fourier Mode. u(x, t) = e−4ω2t sin(ωx) where c = 2 for the 1-D heat equation.

ut − c2uxx = −4ω2e−4ω2t sin(ωx)− c2ω2e−4ω2t sin(ωx) = 0, for c = 2.(54)

Notice that since ω can be anything then a good choice might be ω = nπ/L. Also, since this equation is linear the linear combination

of solutions is also a solution. Thus, time decaying Fourier modes ought to solve this problem......

4.3. Radius Reciprocation. u(x, y, z) =
1p

x2 + y2 + z2
for the 3-D Laplace equation.

The solution is symmetric under variable interchange. Thus,

∂u

∂x
=

−x
(x2 + y2 + z2)3/2

(55)

∂2u

∂x2
=

3x2

(x2 + y2 + z2)5/2
+

−1

(x2 + y2 + z2)3/2
(56)

∂2u

∂y2
=

3y2

(x2 + y2 + z2)5/2
+

−1

(x2 + y2 + z2)3/2
(57)

∂2u

∂z2
=

3z2

(x2 + y2 + z2)5/2
+

−1

(x2 + y2 + z2)3/2
(58)

Thus,

uxx + uyy + uzz =
3(x2 + y2 + z2)

(x2 + y2 + z2)5/2
− 3

(x2 + y2 + z2)3/2
= 0(59)

This result tells us that in three-space a solution to Laplace’s equation, an equation that models potential fields, is the function u = 1/r.

4.4. Driving/Forcing Affects. u(x, y) = x4 + y4 where f(x, y) = 12(x2 + y2) for the 2-D Poisson equation.

First we have,

∂u

∂x
= 4x3,(60)

∂2u

∂y2
= 12y2,(61)

∂u

∂y
= 4y3,(62)

∂2u

∂x2
= 12x2.(63)
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Thus,

∂2u

∂x2
+
∂2u

∂y2
= 12x2 + 12y2 = f(x, y).(64)

Note: The PDE in question are,

• Laplace’s equation : 4u = 0

• Poisson’s equation : 4u = f(x, y, z)

• Heat/Diffusion Equation : ut = c24u
• Wave Equation : utt = c24u

and can be found on page 563 of Kryszig. The following will outline some common notations. It is assumed all differential operators are

being expressed in Cartesian coordinates.10

• Notations for partial derivatives,

∂u

∂x
= ux = ∂xu(65)

• Nabla the differential operator,

∇ =

264 ∂x

∂y

∂z

375(66)

• Gradient of a scalar function,

∇u =

264 ∂xu

∂yu

∂zu

375 =

264 ux

uy

uz

375(67)

• Divergence of a vector,

∇ · v =

264 ∂x

∂y

∂z

375 ·
264 v1

v2

v3

375 = ∂xv1 + ∂yv2 + ∂zv3(68)

• Curl of a vector,

∇× v =

264 ∂yv3 − ∂zv2
∂zv1 − ∂xv3
∂xv2 − ∂yv1

375(69)

• Notations for the Laplacian,

4u = ∇ · ∇u =

264 ∂x

∂y

∂z

375 ·
264 ∂xu

∂yu

∂zu

375(70)

= ∂xxu+ ∂yyu+ ∂zzu(71)

= uxx + uyy + uzz(72)

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
(73)

10Of course others have worked out the common coordinate systems, which requires some elbow grease and the multivariate chain rule. Those

interested in the results can find them at Nabla in Cylindrical and Spherical

http://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates
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