Linear Algebra Overview

or How I Learned to Stop Worrying and Love the Linear Transformation

Scott Strong

June 28, 2010

Outline

1 Introduction

2 Review

3 Background

4 Key Point

5 Backing Material: To be filled in by MATH332

Outline

1 Introduction

2 Review

3 Background

4 Key Point

5 Backing Material: To be filled in by MATH332

introduction

Motivational Peptalk

Robert McKee on Storytelling

Storytelling is the most powerful way to put ideas into the world today.

Robert Moss: Dreamgates

Australian Aborigines say that the big stories-the stories worth telling and retelling, the ones in which you may find the meaning of your life-are forever stalking the right teller, sniffing and tracking like predators hunting their prey in the bush.

Introduction

Motivational Peptalk

Barry Lopez ：Crow and Weasel

If stories come to you，care for them．And learn to give them away where they are needed．Sometimes a person needs a story more than food to stay alive．

Gilda Radner

wanted a perfect ending．Now l＇ve learned，the hard way， that some poems don＇t rhyme，and some stories don＇t have a clear beginning，middle，and end．Life is about not knowing， having to change，taking the moment and making the best of it，without knowing what＇s going to happen next．Delicious ambiguity．

Take Home Message

The Singular Value Decomposition

FIGURE 4 'I he four fundamental subspaces and the action of A.

Take Home Message

The Singular Value Decomposition

FIGURE 4 'I he four fundamental subspaces and the action of A.

Linear Transformations of \mathbb{R}^{n}

Every linear transformation, \mathbf{A}, of finite-dimensional space, can be decomposed into the product of transformations $\mathbf{A}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}}$ where $\boldsymbol{\Sigma}$ characterizes the invertibility of the mapping \mathbf{A} and \mathbf{V} and \mathbf{U} act as geometry preserving isometries.

1 Introduction

2 Review

3 Background

4 Key Point

5 Backing Material: To be filled in by MATH332

Introduction Review Background Key Point Backing Material: To be filled in by MATH332

Functions/Mappings/Transformations

 how to get from here to there
Definition: Function

Diagram: Total Function

Wikipedia: Function - Precises Definition
Working Definition: A function, f, is a rule that uniquely maps elements in its domain, D, to elements in its range, R. We write, $f: D \rightarrow R$ and call the set of ordered pairs $(x, f(x))$ the graph of f.

Example of Total Function $(D=X)$

- Let $f(x)=x^{2}$ where $D=X=\mathbb{R}$ but $R \neq Y=\mathbb{R}$. We say f is total in X but not onto Y.

Introduction Review Background Key Point Backing Material: To be filled in by MATH332

Functions/Mappings/Transformations

 how to get from here to there
Definition: Function

Wikipedia: Function - Precises Definition
Working Definition: A
function, f, is a rule that uniquely maps elements in its domain, D, to elements in its range, R. We write, $f: D \rightarrow R$ and call the set of ordered pairs $(x, f(x))$ the graph of f.

Diagram: Surjection (Onto)

Example of Surjective (Onto) function

- Let $f(x)=x^{2}$ where $D=X=\mathbb{R}$ and $R=Y=[0, \infty)$.

Functions/Mappings/Transformations

 how to get from here to there
Definition: Function

Diagram: Injection (1-to-1)

Wikipedia: Function - Precises Definition
Working Definition: A
function, f, is a rule that uniquely maps elements in its domain, D, to elements in its range, R. We write, $f: D \rightarrow R$ and call the set of ordered pairs $(x, f(x))$ the graph of f.

Example of Injective (One-to-One) function

> - Let $f(x)=x^{2}$ where $D=X=[0, \infty)$ is mapped one-to-one into $Y=\mathbb{R}$ and onto $R=[0, \infty)$

Functions/Mappings/Transformations

 how to get from here to there
Definition: Function

Diagram: Bijection

Wikipedia: Function - Precises Definition
Working Definition: A function, f, is a rule that uniquely maps elements in its domain, D, to elements in its range, R. We write, $f: D \rightarrow R$ and call the set of ordered pairs $(x, f(x))$ the graph of f.

Example of Bijective (one-to-one and onto) function

- Let $f(x)=x^{2}, D=X=[0, \infty)$ and $R=Y=[0, \infty)$. The mapping $f:[0, \infty) \rightarrow[0, \infty)$ is a bijection.

Outline

1 Introduction

2 Review

3 Background

4 Key Point

5 Backing Material: To be filled in by MATH332

Linear Mappings

Part I: General Story

Definition: Linear Map

The transformation $T: X \rightarrow Y$ is linear if,

$$
\begin{aligned}
T\left(x_{1}+x_{2}\right) & =T\left(x_{1}\right)+T\left(x_{2}\right), \\
T\left(\alpha x_{1}\right) & =\alpha T\left(x_{1}\right),
\end{aligned}
$$

Consequences

- Fixed Identity: $T(0)=0$
- Linear Combinations:

$$
T\left(\sum_{j=1}^{N} \alpha_{j} x_{j}\right)=\sum_{j=1}^{N} \alpha_{j} T\left(x_{j}\right)
$$

Examples

- Derivative/Integral
- Linear

Homogeneous:
$f(x)=a x, a \in \mathbb{R}$

Linear Mappings

Part II : Matrix Transformations

General Linear Equation

Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. If f is linear then it must take the form $f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=f(\mathbf{x})=a_{j} x_{j}$ for $a_{j} \in \mathbb{R}$. If $n=3$ then we have the equation of a plane, $f(\mathbf{x})=a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}$.

General Linear System

Matrix Transformation

$A(x)=f$ is a Linear Mapping

Linear Mappings

Part II: Matrix Transformations

General Linear Equation

Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. If f is linear then it must take the form $f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=f(\mathbf{x})=a_{j} x_{j}$ for $a_{j} \in \mathbb{R}$. If $n=3$ then we have the equation of a plane, $f(\mathbf{x})=a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}$.

General Linear System

Matrix Transformation

Suppose we $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ where $i=1,2,3, \ldots, m$. If each f_{i} is linear then it must take the form $f_{i}(\mathbf{x})=a_{i j} x_{j}$. Collectively, this is called a system of linear equations. For $n=2$ and $m=3$ we have ????? ?????.

Linear Mappings

Part II: Matrix Transformations

General Linear Equation

Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. If f is linear then it must take the form $f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=f(\mathbf{x})=a_{j} x_{j}$ for $a_{j} \in \mathbb{R}$. If $n=3$ then we have the equation of a plane, $f(\mathbf{x})=a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}$.

General Linear System

Matrix Transformation

Suppose we $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ where $i=1,2,3, \ldots, m$. If each f_{i} is linear then it must take the form $f_{i}(\mathbf{x})=a_{i j} x_{j}$. Collectively, this is called a system of linear equations. For $n=2$ and $m=3$ we have three lines.

Linear Mappings

Part II : Matrix Transformations

General Linear Equation

Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. If f is linear then it must take the form $f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=f(\mathbf{x})=a_{j} x_{j}$ for $a_{j} \in \mathbb{R}$. If $n=3$ then we have the equation of a plane, $f(\mathbf{x})=a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}$.

General Linear System

Suppose we $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ where $i=1,2,3, \ldots, m$. If each f_{i} is linear then it must take the form $f_{i}(\mathbf{x})=a_{i j} x_{j}$. Collectively, this is called a system of linear equations. For $n=2$ and $m=3$ we have ..

Matrix Transformation

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \quad \mathbf{f}=\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{m}
\end{array}\right]
$$

$\mathbf{A}(\mathbf{x})=\mathbf{f}$ is a Linear Mapping

Matrix Fundamentals

Equivalent Forms for Linear Systems

Linear System of Equations：m－many linear objects in n－dimensions

$$
\begin{array}{cccccc}
a_{11} x_{1}+ & a_{12} x_{2}+ & a_{13} x_{3}+ & \cdots & +a_{1 n} x_{n} & =f_{1}, \\
a_{21} x_{1}+ & a_{22} x_{2}+ & a_{23} x_{3}+ & \cdots & +a_{2 n} x_{n} & =f_{2} \\
\vdots & \vdots & & \ddots & \vdots & \vdots \\
a_{m 1} x_{1}+ & a_{m 2} x_{2}+ & a_{m 3} x_{3}+ & \cdots & +a_{m n} x_{n} & =f_{m},
\end{array}
$$

Matrix Fundamentals

Equivalent Forms for Linear Systems

Linear System of Equations: m-many linear objects in n-dimensions

$$
\begin{array}{cccccc}
a_{11} x_{1}+ & a_{12} x_{2}+ & a_{13} x_{3}+ & \cdots & +a_{1 n} x_{n} & =f_{1}, \\
a_{21} x_{1}+ & a_{22} x_{2}+ & a_{23} x_{3}+ & \cdots & +a_{2 n} x_{n} & =f_{2}, \\
\vdots & \vdots & & \ddots & \vdots & \vdots \\
a_{m 1} x_{1}+ & a_{m 2} x_{2}+ & a_{m 3} x_{3}+ & \cdots & +a_{m n} x_{n} & =f_{m},
\end{array}
$$

Linear Combinations of Vectors: Alternate Representations of \mathbf{f}
$x_{1}\left[\begin{array}{c}a_{11} \\ a_{21} \\ \vdots \\ a_{m 1}\end{array}\right]+x_{2}\left[\begin{array}{c}a_{12} \\ a_{22} \\ \vdots \\ a_{m 2}\end{array}\right]+x_{3}\left[\begin{array}{c}a_{13} \\ a_{23} \\ \vdots \\ a_{m 3}\end{array}\right]+\cdots+x_{n}\left[\begin{array}{c}a_{1 n} \\ a_{2 n} \\ \vdots \\ a_{m n}\end{array}\right]=\left[\begin{array}{c}f_{1} \\ f_{2} \\ \vdots \\ f_{m}\end{array}\right]$

Matrix Fundamentals

Equivalent Forms for Linear Systems

Linear System of Equations: m-many linear objects in n-dimensions

$$
\begin{array}{cccccc}
a_{11} x_{1}+ & a_{12} x_{2}+ & a_{13} x_{3}+ & \cdots & +a_{1 n} x_{n} & =f_{1}, \\
a_{21} x_{1}+ & a_{22} x_{2}+ & a_{23} x_{3}+ & \cdots & +a_{2 n} x_{n} & =f_{2}, \\
\vdots & \vdots & & \ddots & \vdots & \vdots \\
a_{m 1} x_{1}+ & a_{m 2} x_{2}+ & a_{m 3} x_{3}+ & \cdots & +a_{m n} x_{n} & =f_{m},
\end{array}
$$

Matrix Transformations: $\mathbf{A x}=\mathbf{f}$

$$
\left[\begin{array}{rllll}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
\vdots & & & \ddots & \\
a_{m 1} & a_{m 2} & a_{m 3} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{m}
\end{array}\right]
$$

Summary
 Linear Mappings and the Fundamental Question

Matrix Transformations

A transformation of n-dimensional space is defined as,

$$
\begin{equation*}
\mathbf{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \quad n, m \in \mathbb{N} \tag{1}
\end{equation*}
$$

If the transformation is linear then \mathbf{A} can be represented as a matrix, which acts on vectors from \mathbb{R}^{n} and returns vectors from \mathbb{R}^{m}. Symbolically, we have $A(x)=A x=f \in \mathbb{R}^{m}$ for $x \in \mathbb{R}^{n}$.

Fundamental Question

\square

Summary
 Linear Mappings and the Fundamental Question

Matrix Transformations

A transformation of n-dimensional space is defined as,

$$
\begin{equation*}
\mathbf{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \quad n, m \in \mathbb{N} \tag{1}
\end{equation*}
$$

If the transformation is linear then \mathbf{A} can be represented as a matrix, which acts on vectors from \mathbb{R}^{n} and returns vectors from \mathbb{R}^{m}. Symbolically, we have $A(x)=A x=f \in \mathbb{R}^{m}$ for $x \in \mathbb{R}^{n}$.

Fundamental Question

Given a linear transformation, \mathbf{A}, of \mathbb{R}^{n} what can be said about its inverse transformation \mathbf{A}^{-1} of \mathbb{R}^{m} ?

Outline

1 Introduction

2 Review

3 Background

4 Key Point

5 Backing Material: To be filled in by MATH332

Singular Value Decomposition (SVD)

Linear Transformations of \mathbb{R}^{n} are well-understood.

Theorem: SVD

Let \mathbf{A} be linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m}. The matrix representation of \mathbf{A} has the following decomposition,

$$
\begin{equation*}
\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}}, \tag{2}
\end{equation*}
$$

where $\mathbf{V}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$,
$\mathbf{U}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ are orthogonal
matricies and $\Sigma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is
diagonal.

Singular Value Decomposition (SVD)

Linear Transformations of \mathbb{R}^{n} are well-understood.

Theorem: SVD

Let \mathbf{A} be linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m}. The matrix representation of \mathbf{A} has the following decomposition,

$$
\begin{equation*}
\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}}, \tag{2}
\end{equation*}
$$

where $\mathbf{V}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$,
$\mathbf{U}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ are orthogonal matricies and $\Sigma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is diagonal.

FIGURE 4 'I he four fundamental subspaces and the action of A.

SVD Breakdown - Part I

Action of the Singular Value Matrix

A Diagonal Problem

For every A we now have,

$$
\mathbf{A} \mathbf{x}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}} \mathbf{x}=\mathbf{U} \boldsymbol{\Sigma} \tilde{\mathbf{x}}=\mathbf{y}
$$

where $\tilde{\mathbf{x}}=\mathbf{V}^{\mathrm{T}} \mathbf{x}$. Similarly,

$$
\Sigma \tilde{x}=U^{\mathbb{T}} y=\tilde{y} .
$$

Roughly, this means that when $\sigma_{i} \neq 0$ we have,

$$
\Sigma \tilde{\mathbf{x}}=\tilde{\mathbf{y}} \Longleftrightarrow\left[\begin{array}{cccc}
\sigma_{1} & 0 & \cdots & 0 \\
0 & \sigma_{2} & \cdots & 0 \\
\vdots & & \ddots &
\end{array}\right]\left[\begin{array}{c}
\tilde{x}_{1} \\
\tilde{x}_{2} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
\tilde{y}_{1} \\
\tilde{y}_{2} \\
\vdots
\end{array}\right] \Longrightarrow \tilde{x}_{i}=\frac{\tilde{y}_{i}}{\sigma_{i}} .
$$

SVD Breakdown - Part II

Action of A as seen through SVD

Orthogonal Transformations

Both \mathbf{U} and \mathbf{V} are orthogonal matrices. If \mathbf{M} is an orthogonal matrix then:

Key Point

Action of \mathbf{A} by $\mathbf{\Sigma}$

SVD Breakdown - Part II

Action of \mathbf{A} as seen through SVD

Orthogonal Transformations

Both \mathbf{U} and \mathbf{V} are orthogonal matrices. If \mathbf{M} is an orthogonal matrix then:

- Angle Preservation: $\mathrm{M}(\mathrm{x} \cdot \mathrm{y})=\mathrm{x} \cdot \mathrm{y}$

Key Point
Action of \mathbf{A} by $\boldsymbol{\Sigma}$

SVD Breakdown - Part II

Action of \mathbf{A} as seen through SVD

Orthogonal Transformations

Both \mathbf{U} and \mathbf{V} are orthogonal matrices. If \mathbf{M} is an orthogonal matrix then:

- Angle Preservation: $\mathrm{M}(\mathrm{x} \cdot \mathrm{y})=\mathrm{x} \cdot \mathrm{y}$
- Length Preservation: $||\mathrm{Mx}\|=\| \mathrm{x}|$

Key Point

Action of \mathbf{A} by $\boldsymbol{\Sigma}$

SVD Breakdown - Part II

Action of \mathbf{A} as seen through SVD

Orthogonal Transformations

Both \mathbf{U} and \mathbf{V} are orthogonal matrices. If \mathbf{M} is an orthogonal matrix then:

- Angle Preservation: $\mathrm{M}(\mathrm{x} \cdot \mathrm{y})=\mathrm{x} \cdot \mathrm{y}$
- Length Preservation: ||Mx||=||x|
- Distance Preservation: $\|\mathbf{M}(x-y)\|=\|x-y\|$

Key Point

Action of \mathbf{A} by $\boldsymbol{\Sigma}$

SVD Breakdown - Part II

Action of \mathbf{A} as seen through SVD

Orthogonal Transformations

Both \mathbf{U} and \mathbf{V} are orthogonal matrices. If \mathbf{M} is an orthogonal matrix then:

- Angle Preservation: $\mathrm{M}(\mathrm{x} \cdot \mathrm{y})=\mathrm{x} \cdot \mathrm{y}$
- Length Preservation: $||\mathbf{M x}\|=\| \mathbf{x}|$
- Distance Preservation: $\|\mathrm{M}(\mathrm{x}-\mathrm{y})\|=\|\mathrm{x}-\mathrm{y}\|$

Key Point

- The action of \mathbf{V}^{T} preserves the geometry of the input-vector space.

Action of \mathbf{A} by $\boldsymbol{\Sigma}$

ㅁ

SVD Breakdown - Part II

Action of \mathbf{A} as seen through SVD

Orthogonal Transformations

Both \mathbf{U} and \mathbf{V} are orthogonal matrices. If \mathbf{M} is an orthogonal matrix then:

- Angle Preservation: $\mathrm{M}(\mathrm{x} \cdot \mathrm{y})=\mathrm{x} \cdot \mathrm{y}$
- Length Preservation: $||\mathbf{M x}\|=\| \mathbf{x}|$
- Distance Preservation: $\|\mathrm{M}(\mathrm{x}-\mathrm{y})\|=\|\mathrm{x}-\mathrm{y}\|$

Key Point

- The action of \mathbf{V}^{T} preserves the geometry of the input-vector space.
- The action of U^{T} preserves the geometry of the output vector-space.

Action of \mathbf{A} by $\boldsymbol{\Sigma}$

SVD Breakdown - Part II

Action of \mathbf{A} as seen through SVD

Orthogonal Transformations

Both \mathbf{U} and \mathbf{V} are orthogonal matrices. If \mathbf{M} is an orthogonal matrix then:

- Angle Preservation: $\mathrm{M}(\mathrm{x} \cdot \mathrm{y})=\mathrm{x} \cdot \mathrm{y}$
- Length Preservation: $||\mathbf{M x}\|=\| \mathbf{x}|$
- Distance Preservation: $\|\mathbf{M}(x-y)\|=\|x-y\|$

Key Point

- The action of \mathbf{V}^{T} preserves the geometry of the input-vector space.

Action of \mathbf{A} by $\boldsymbol{\Sigma}$

- $\mathrm{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ reduces to
$\Sigma: \tilde{\mathbb{R}}^{n} \rightarrow \tilde{\mathbb{R}}^{m}$
- The action of UT $^{\mathrm{T}}$ preserves the geometry of the output vector-space.

SVD Breakdown - Part II

Action of \mathbf{A} as seen through SVD

Orthogonal Transformations

Both \mathbf{U} and \mathbf{V} are orthogonal matrices. If \mathbf{M} is an orthogonal matrix then:

- Angle Preservation: $\mathrm{M}(\mathrm{x} \cdot \mathrm{y})=\mathrm{x} \cdot \mathrm{y}$
- Length Preservation: $||\mathbf{M x}\|=\| \mathbf{x}|$
- Distance Preservation: $\|\mathbf{M}(x-y)\|=\|x-y\|$

Key Point

- The action of \mathbf{V}^{T} preserves the geometry of the input-vector space.
- The action of UT $^{\mathrm{T}}$ preserves the geometry of the output vector-space.

Action of A by $\boldsymbol{\Sigma}$

- $\mathrm{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ reduces to $\Sigma: \tilde{\mathbb{R}}^{n} \rightarrow \tilde{\mathbb{R}}^{m}$
- Σ scales by $\sigma_{i} \tilde{x}_{i}=\tilde{y}_{i}$

SVD Breakdown - Part III

Morse-Penrose Inverse

FIGURE 4 'I he four fundamental subspaces and the action of A.

Back to the Problem at Hand: Invertible Linear Mappings
Clearly, A cannot always be one-to-one and onto (bijective). However, we can restrict A to a domain and range for which it is bijective.

SVD Breakdown - Part III

Morse-Penrose Inverse

FIGURE 4 'I he four fundamental subspaces and the action of A.

Back to the Problem at Hand: Invertible Linear Mappings
Clearly, A cannot always be one-to-one and onto (bijective). However, we can restrict \mathbf{A} to a domain and range for which it is bijective.

- For such a restriction we have $\mathbf{A}=\mathbf{U}_{r} \boldsymbol{\Sigma}_{r} \mathbf{V}_{r}^{\mathrm{T}}$, which gives rise to a
pseduoinverse or the Morse-Penrose Inverse

$$
\mathbf{A}^{+}=\mathbf{V}_{r} \boldsymbol{\Sigma}^{-1} \mathbf{U}_{r}^{\mathrm{T}} .
$$

SVD Breakdown - Part III

Morse-Penrose Inverse
Back to the Problem at Hand: Invertible Linear Mappings
Clearly, A cannot always be one-to-one and onto
(bijective). However, we can restrict \mathbf{A} to a domain and range for which it is bijective.

- For such a restriction we have $\mathbf{A}=\mathbf{U}_{r} \boldsymbol{\Sigma}_{r} \mathbf{V}_{r}^{\mathrm{T}}$, which gives rise to a
pseduoinverse or the Morse-Penrose Inverse

$$
\mathbf{A}^{+}=\mathbf{V}_{r} \boldsymbol{\Sigma}^{-1} \mathbf{U}_{r}^{\mathrm{T}} .
$$

Summary

Characterization of Linear Transformations on \mathbb{R}^{n}

For every linear transformation $\mathbf{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

wkikedia: svD \mathbf{A} admits the singular value decomposition $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}}$

Wikipedia: Unitary Matrix U and $\mathrm{V}^{\text {T}}$ are orthogonal matrices
waykipedia dsometry
respectively

Wikipedia: Diagonal Matrix
system to a diagonal problem

Wikipedia: Pseudoinverse

Summary

Characterization of Linear Transformations on \mathbb{R}^{n}

For every linear transformation $\mathbf{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

wkikedia：svD \mathbf{A} admits the singular value decomposition $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}}$
wikipecia：Unitay Matiox \mathbf{U} and \mathbf{V}^{T} are orthogonal matrices
Wikipedia：Isometry

Wikipedia：Diagonal Matrix
systen to a diagonal problem

Wikipedia：Pseudoinverse

Summary

Characterization of Linear Transformations on \mathbb{R}^{n}
For every linear transformation $\mathrm{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$
wkikedia: svD \mathbf{A} admits the singular value decomposition $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}}$
Wkikesiaia Unitay Matiix \mathbf{U} and \mathbf{V}^{T} are orthogonal matrices Wwikpedia: sometry \mathbf{U} and \mathbf{V}^{T} are isometries of \mathbb{R}^{m} and \mathbb{R}^{n}, respectively.

Wikipedia: Diagonal Matrix system to a diagonal problem.

Wikipedia: Pseudoinverse

Summary

Characterization of Linear Transformations on \mathbb{R}^{n}
For every linear transformation $\mathbf{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$
wkikedia: svD \mathbf{A} admits the singular value decomposition $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}}$
Wkikipedia: Unitay Matiix \mathbf{U} and \mathbf{V}^{T} are orthogonal matrices
Wikipedia: sometry \mathbf{U} and \mathbf{V}^{T} are isometries of \mathbb{R}^{m} and \mathbb{R}^{n}, respectively.
Wkikipedia: Diagonal Matiix Σ is diagonal and reduces the linear system to a diagonal problem.

Wikipedia: Pseudoinverse

Summary

Characterization of Linear Transformations on \mathbb{R}^{n}
For every linear transformation $\mathbf{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$
Wkikesia: svD \mathbf{A} admits the singular value decomposition $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}}$
Wrikepedia: Unitary Matiix \mathbf{U} and \mathbf{V}^{T} are orthogonal matrices
Wikipedia: sometry \mathbf{U} and \mathbf{V}^{T} are isometries of \mathbb{R}^{m} and \mathbb{R}^{n}, respectively.
Wkikipedia: Diagonal Mattix Σ is diagonal and reduces the linear system to a diagonal problem.
Wrikeditia: Psesudoinvese While A may not be invertible, through its SVD it is possible to define a pseudoinverse, $\mathbf{A}^{+}=\mathbf{V}_{r} \boldsymbol{\Sigma}^{-1} \mathbf{U}_{r}^{\mathrm{T}}$ by restricting the domain and range on which \mathbf{A} acts.

Outline

1 Introduction

2 Review

3 Background

4 Key Point

5 Backing Material: To be filled in by MATH332

