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Introduction
Motivational Peptalk

Robert McKee on Storytelling

Storytelling is the most powerful way to put ideas into the
world today.

Robert Moss : Dreamgates

Australian Aborigines say that the big stories—the stories
worth telling and retelling, the ones in which you may find the
meaning of your life—are forever stalking the right teller,
sniffing and tracking like predators hunting their prey in the
bush.
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Introduction
Motivational Peptalk

Barry Lopez : Crow and Weasel

If stories come to you, care for them. And learn to give them
away where they are needed. Sometimes a person needs a
story more than food to stay alive.

Gilda Radner

I wanted a perfect ending. Now I’ve learned, the hard way,
that some poems don’t rhyme, and some stories don’t have a
clear beginning, middle, and end. Life is about not knowing,
having to change, taking the moment and making the best of
it, without knowing what’s going to happen next. Delicious
ambiguity.
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Take Home Message
The Singular Value Decomposition
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Take Home Message
The Singular Value Decomposition

Linear Transformations of Rn

Every linear transformation, A, of finite-dimensional space, can
be decomposed into the product of transformations
A = UΣVt where Σ characterizes the invertibility of the
mapping A and V and U act as geometry preserving
isometries.
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Functions/Mappings/Transformations
how to get from here to there

Definition: Function
Wikipedia: Function - Precises Definition

Working Definition: A
function, f , is a rule that
uniquely maps elements in its
domain, D, to elements in its
range, R . We write, f : D → R
and call the set of ordered
pairs (x , f (x)) the graph of f .

Diagram: Total Function

Example of Total Function (D = X )

Let f (x) = x2 where D = X = R but R 6= Y = R. We
say f is total in X but not onto Y .
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uniquely maps elements in its
domain, D, to elements in its
range, R . We write, f : D → R
and call the set of ordered
pairs (x , f (x)) the graph of f .

Diagram: Surjection (Onto)

Example of Surjective (Onto) function

Let f (x) = x2 where D = X = R and R = Y = [0,∞).
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Working Definition: A
function, f , is a rule that
uniquely maps elements in its
domain, D, to elements in its
range, R . We write, f : D → R
and call the set of ordered
pairs (x , f (x)) the graph of f .

Diagram: Injection (1-to-1)

Example of Injective (One-to-One) function

Let f (x) = x2 where D = X = [0,∞) is mapped
one-to-one into Y = R and onto R = [0,∞)
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Functions/Mappings/Transformations
how to get from here to there

Definition: Function
Wikipedia: Function - Precises Definition

Working Definition: A
function, f , is a rule that
uniquely maps elements in its
domain, D, to elements in its
range, R . We write, f : D → R
and call the set of ordered
pairs (x , f (x)) the graph of f .

Diagram: Bijection

Example of Bijective (one-to-one and onto) function

Let f (x) = x2, D = X = [0,∞) and R = Y = [0,∞).
The mapping f : [0,∞)→ [0,∞) is a bijection.
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Linear Mappings
Part I : General Story

Definition: Linear Map

The transformation T : X → Y is linear if,

T (x1 + x2) = T (x1) + T (x2),

T (αx1) = αT (x1),

for any x1, x2 ∈ X and any α ∈ R. Wikipedia : Linear Map

Consequences

Fixed Identity: T (0) = 0

Linear Combinations:

T

(
N∑
j=1

αjxj

)
=

N∑
j=1

αjT (xj)

Examples

Derivative/Integral

Linear
Homogeneous:
f (x) = ax , a ∈ R
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Linear Mappings
Part II : Matrix Transformations

General Linear Equation

Suppose f : Rn → R. If f is linear then it must take the form
f (x1, x2, x3, . . . , xn) = f (x) = ajxj for aj ∈ R. If n = 3 then we
have the equation of a plane, f (x) = a1x1 + a2x2 + a3x3.

General Linear System

Suppose we fi : Rn → R where
i = 1, 2, 3, . . . ,m. If each fi is
linear then it must take the
form fi(x) = aijxj . Collectively,
this is called a system of linear
equations. For n = 2 and
m = 3 we have .

Matrix Transformation

x =


x1

x2
...
xn

 , f =


f1
f2
...
fm


A(x) = f is a Linear Mapping
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Suppose we fi : Rn → R where
i = 1, 2, 3, . . . ,m. If each fi is
linear then it must take the
form fi(x) = aijxj . Collectively,
this is called a system of linear
equations. For n = 2 and
m = 3 we have three lines.

Matrix Transformation

x =


x1

x2
...
xn

 , f =


f1
f2
...
fm


A(x) = f is a Linear Mapping
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Matrix Fundamentals
Equivalent Forms for Linear Systems

Linear System of Equations: m-many linear objects in n-dimensions

a11x1+ a12x2+ a13x3+ · · · +a1nxn = f1,
a21x1+ a22x2+ a23x3+ · · · +a2nxn = f2,

...
...

. . .
...

...
am1x1+ am2x2+ am3x3+ · · · +amnxn = fm,
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a11x1+ a12x2+ a13x3+ · · · +a1nxn = f1,
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...
...

. . .
...

...
am1x1+ am2x2+ am3x3+ · · · +amnxn = fm,

Linear Combinations of Vectors: Alternate Representations of f

x1


a11

a21
...

am1

+x2


a12

a22
...

am2

+x3


a13

a23
...

am3

+ · · ·+xn


a1n

a2n
...

amn

 =


f1
f2
...
fm
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Matrix Fundamentals
Equivalent Forms for Linear Systems

Linear System of Equations: m-many linear objects in n-dimensions

a11x1+ a12x2+ a13x3+ · · · +a1nxn = f1,
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. . .
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...
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Matrix Transformations: Ax = f
a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n
...

. . .

am1 am2 am3 · · · amn




x1

x2
...
xn

 =
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f2
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Summary
Linear Mappings and the Fundamental Question

Matrix Transformations

A transformation of n-dimensional space is defined as,

A : Rn → Rm, n,m ∈ N. (1)

If the transformation is linear then A can be represented as a
matrix, which acts on vectors from Rn and returns vectors
from Rm. Symbolically, we have A(x) = Ax = f ∈ Rm for
x ∈ Rn.

Fundamental Question

Given a linear transformation, A, of Rn what can be said
about its inverse transformation A−1 of Rm?
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Singular Value Decomposition (SVD)
Linear Transformations of Rn are well-understood.

Theorem: SVD

Let A be linear transformation
from Rn to Rm. The matrix
representation of A has the
following decomposition,

A = UΣVt, (2)

where V : Rn → Rn,
U : Rm → Rm are orthogonal
matricies and Σ : Rn → Rm is
diagonal.
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SVD Breakdown - Part I
Action of the Singular Value Matrix

A Diagonal Problem

For every A we now have,

Ax = UΣVtx = UΣx̃ = y,

where x̃ = Vtx. Similarly,

Σx̃ = Uty = ỹ.

Roughly, this means that when σi 6= 0 we have,

Σx̃ = ỹ ⇐⇒

 σ1 0 · · · 0
0 σ2 · · · 0
...

. . .


 x̃1

x̃2
...

 =

 ỹ1

ỹ2
...

 =⇒ x̃i =
ỹi
σi
.
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SVD Breakdown - Part II
Action of A as seen through SVD

Orthogonal Transformations

Both U and V are orthogonal matrices. If M is an orthogonal
matrix then:

Angle Preservation: M(x · y) = x · y
Length Preservation: ||Mx|| = ||x||
Distance Preservation: ||M(x− y)|| = ||x− y||

Key Point

The action of Vt preserves the
geometry of the input-vector space.

The action of Ut preserves the
geometry of the output vector-space.

Action of A by Σ

A : Rn → Rm

reduces to
Σ : R̃n → R̃m

Σ scales by
σi x̃i = ỹi
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SVD Breakdown - Part III
Morse-Penrose Inverse

Back to the Problem at Hand:
Invertible Linear Mappings

Clearly, A cannot always be
one-to-one and onto
(bijective). However, we can
restrict A to a domain and
range for which it is bijective.

For such a restriction we
have A = UrΣrV

t
r , which

gives rise to a
pseduoinverse or the
Morse-Penrose Inverse
A+ = VrΣ

−1Ut
r .
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Summary
Characterization of Linear Transformations on Rn

For every linear transformation A : Rn → Rm

Wikipedia: SVD A admits the singular value decomposition
A = UΣVt

Wikipedia: Unitary Matrix U and Vt are orthogonal matrices

Wikipedia: Isometry U and Vt are isometries of Rm and Rn,
respectively.

Wikipedia: Diagonal Matrix Σ is diagonal and reduces the linear
system to a diagonal problem.

Wikipedia: Pseudoinverse While A may not be invertible, through its
SVD it is possible to define a pseudoinverse,
A+ = VrΣ

−1Ut
r by restricting the domain and

range on which A acts.
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