Interaction of light with atoms

QM estimation of dipole radiation and lifetime

Summary of time-dependent perturbation theory approach

Reading: Svelto 2.3-2.4



Interaction of light with a 2-level system

* Three allowed processes:

absorption Spontaneous emission Stimulated emission
Uppe
: ' —e— : —@—
]
-
.t v —Ap— E, cde—
er level atom

— Note photon energy matches transition energy
— All three process are related in the quantum picture



QM atomic transitions

We’'ll take an approach to understanding transitions from the
gquantum perspective

* An isolated atom in a pure energy eigenstate is in a

Stationary state: o (r,t) = (r)e—Ent/h

— There is time dependence to the phase, but the amplitude remains

constant. So, no transitions.

* An applied EM field of the right frequency can induce a
mixture of two states:

v (r.0)=u (r)e "y, (,0) = uy (r)e ="

— Superposition:
sei> 1//(r,t):al(t)y/l(r,t)+a2(t)1//2(r,t)

— w/ normalization: ‘al(t)‘z +‘a2(;)‘2 _1



QM charge distribution

The electron is not localized in QM.
The charge density can be calculated from w:
p(r.r)=—dw(r.c)
For a stationary state:
p(r.t)=—ely,(r.r)’ u, (r)
— No time dependence, charge is not moving!

For a superposition state:
2
p(l’,t)z—e‘l//(l',t) :_e‘aﬂ”l""azl//z

2

—E t/h
T =—e

= —e‘un(r)e

| 2

2 2 * * * *
= _e(|a1l//1| +|a21//2| Taa, Y\, ra a,y, l//2)
— Cross terms will lead to time dependence in the charge.



QM dipole moment calculation

* The nucleus is localized, but the electron charge
Is distributed.

* The effective position is calculated like the center
of mass, so dipole moment is: .

applied
2 dV p=gr

jr|alwl|2dV+Jr|a2w2|2dV 2 r

u(r)=—efr|y(r.)

+Ja1a2 ry\y, dvV+ J.al ary, y,dv

— Terms in red go to zero: parity.



Time dependent dipole moment

* The cross terms (which are like interference terms
In optics), lead to time dependent oscillation:

HMoge (t) = —e(alaz*J.rllfll//; dv + al*azjrl//1*l//2 dV)

= —e(alaz*_‘-r u, (r)u, (r) e BB gy 4 al*azful* (r)u, (r)e_i(Ez_El)t/h dV)

— Oscillation frequency: ®,,=(E,—E,)/h
Mo ()= _e(alaz*uzleiwzlt T al*%‘ulze—iwmt) = _eRe[zalaz*uzleiwﬂt]
W, = J.ul (r)(—er)uz* (r)dv Dipole “matrix element”

* My, Is the part that depends on the atomic structure,

independent of the populations.
« This is a vector, but the direction of r corresponds to the E-field

direction, relative to the atom or molecule.



QM dipole radiated power

« Use classical Larmor expression to estimate the radiated
power from this oscillating dipole.

by 1 28(F@) 121 ; Note: 1=p
< rad>— AT, g o3 B 4re, §c3 J“ (t) ! Integrate over
one period
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QM dipole radiation: rate of decay

. Simplify the cycle averaged radiated power
>_€ ‘0, .U21 |al| |a2| —hwzle ‘0, Wy, |a| |a2|
31e, ¢’ 3nme, ¢’ Rate (frequency)

 If we assume that the excitation probability of the upper
level is small, then

» Photon energy

(P

rad

2
|a1| = 1—|a2| ~ 1

 We can then deduce the change in upper level population:

Define: 3
dE d ) 1 3rmhec
ar = V) =10 5] (1) T, Py,

dt‘az ‘ ~—T—‘a2 ‘ %‘az(t)‘zz‘az(O)‘zexp[—t/Tsp]

sp
This connects the spontaneous emission rate to a quantum
calculation of the dipole moment.



Selection rules

* |In Dirac notation, the dipole matrix element is:
o, = (2] = ex|1) = i, (r)(~er)u, (x)av

« Working with the symmetries of wavefunctions leads to
selection rules about which transitions can take place.
— Parity: ris odd, so u, must be opposite parity of u,
— Angular momentum: Al = £1. Photon carries 1 unit of ang. mom.

* Exceptions:
— Transition might take place under other moments:
« Magnetic dipole, electric quadrupole, etc.
 Leads to longer lifetimes.
— States might not be “pure”, mixture of eigenstates
« External or internal perturbations
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FIG. 10.1. Relevant energy levels of the He-Ne laser.
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Fig. 3: The most important laser transitions in the neon



Full QM approach

* Next level up in accuracy in QM is to approximately solve
the Schrodinger equation in the presence of the incident
field

— QM representation of the electron wavefunction W(l',t)
— Classical representation of the EM field as a perturbation

ﬁz.,,:m%_‘/t’ A=0 + B
« Without external field: With external field (E-dipole):
I_Alol// %—l/: —~H WV, =EWvw, PAI'=,u-E=—er-E0sina)t

 Assume wavefunction with field can be written in terms of
a linear combination of wavefunctions without field

Za t)y, (r.) v, (rr)=u,(r)e

—E,t/h



Time-dependent perturbation theory

Easiest to concentrate on 2 levels
Assume close to resonance:
~(E,—E,)/h=aw,
Assume weak probability of excitation:
a(r)=1, a,(r)<1
Put form of solution into time-dependent SE (with field)
Transition rate will be

d
W, = E ‘az (I)‘z

Result: “Fermi’s Golden Rule §(v—v,) Dirac delta function

le(V):%wzlrEo%(V_vo) Jf V v dv f( )




Fermi’s golden rule

« Express field in terms of (total) energy density:

p= %nze E2 For other lineshape:
) 2
> WalV) = ol 3(v =) = ol pi(v )
n’e,h

 When EM source varies in frequency, energy density btw
v and v'+dv'is dp=p, dv’
* So the contribution to the rate at v’ is

2m?

dw,, (V') = 2 |.u21|2 Py g(V —V )dv,

 Total rate is:




Working with spectral lineshapes

* For atomic system, replace Dirac delta with transition
lineshape
jg(v—vo)dv =1

« Lorentzian lineshape (radiative, collisional broadening)

2 1
5(V—VO)%8L(V—VO):7TAV Y -
. _
AVO FWHM 1+( AVOO j

* Doppler broadened (Gaussian) lineshape

2
" 2 [In2 V-V
S(v—-v,)— g, (V_VO)ZAV* Iylr exp{—4ln2(Av fz) }
0 0




Lorentzian vs Gaussian lineshapes

* Lorentzian is much broader in spectral wings
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Natural broadening

« Radiative broadening results directly from the
spontaneous emission lifetime of the state

 Fourier transforms
— Forward: FT F(w):J'_‘” f(t)eiwtdt

— Inverse: FT-! f(t):i :OF(w)e—ia)t do

« Suppose exponential, oscillating decay in time domain

-yt _—iWyt

N= €€ fort =0
f( ) 0 fort <0
_ | | (—y+i(w-w,))t
F(a)):J. e‘?’t—lwotelwtdtz e _ . 1
0 . y—z(a)—a)o)

—y+i(o-w,)
Complex Lorentzian




Lorentzian lineshape

« Complex Lorentzian separated into Re and Im
1 _ Y : (w — (00)
, = T i s
y-ilo-0,) (0-0,)+y> (0-0,) +7
— Real part corresponds to absorption effects

* Normalize

YIT

14 T
do=cy—=1 —>g (l0-w,)=
CJ‘(a)_a)O)2+f}/2 Cj/y gL( O) (a)_wo)2+y2

e Convertwtov

14 |
dv=cy—-=1
CJ Aar*(v—v,) +7° oy
) . ) :
o2 L f2vmv)Y | 2 2(v—v,)
— g, (v VO)_y 1+[ T ] = av. 1+( Av,




Collisional broadening

 Elastic collisions don’t cause transition, but interrupt the
phase

 Timescales: -
— Period of EM cycle much less than radiative lifetime —<7T

a)O
— Avg time btw collisions < lifetime T.<7T
— Duration of a collision << time btw coll, lifetime AT, <T,,T

« Calculation:
— FT over time O to 1, to get lineshape for a specific oscillation length

— Average over probability of a given time between collisions:

Result:

1 _
P(t,)dr,=—e "'"dr, Lorentzian shape with new width
T

c

Av=y/2r+1/rT,



Doppler broadening

* From relative velocity of atom to input beam, Doppler shift:
’ VO

0T _ V. /e Beam propagating in z direction

— Each atom in distribution is shifted according to its velocity
* Boltzmann distribution

P(VZ)~exp[—%MvZ2 /kBT]
« Average over distribution to get effective lineshape:
1/2 2
, 1 Mc’ Mc* (v-v
g (v-v,)= exp ( 20)
Vo \ 2k, T 2k, T v,

2k, T In2 }”2
Mc®

FWHM:

Av, = 2V0|:



Doppler broadening in HeNe lasers

2

) 1 2 1/2
Av, =2v0[2k§;n }
C

A, =632.8nm
v, =4.74%x10"%s™
M =20.12 amu=3.34 x 10 *°kg For Neon

k,T =1/40eV =4x107"J

Av, =1.55GHz



Inhomogeneous vs homogeneous

broadening

 Homogeneous broadening:
every atom is broadened by
same shape
— Radiative, collisional, phonon
— All atoms participate in absorption

or gain

* Inhomogeneous broadening:

— Doppler broadening

— Absorption or gain only by atoms in
resonance

— Leads to “spectral hole burning”

Intensity (a.u.)

|

|

Difference

Before burning
\‘~

After burning
\

17400 17350 17300 17250 17200
Wave number {cm-1)




Amplifiers: pumping and small-signal
gain
* Absorption  7[z]=1, exp|—N,0,,z]| =1, exp|—0 7]

« Gain I[Z]=IO exp[va621z]:Io exp[gz]
— What is the inversion density?
— How to express it in terms of the pump distribution
— How does gain depend on A or w ?
— What happens when the inversion density is depleted?




Simple gain calculation

Assume uniform pump distribution
G, = GXP[NWGH L] Small-signal gain
Available energy for extraction:

E =N ALhv. —>N. = By A = area of beam
stor inv 21 inv A L h V21
E,. O
G() — eXp stor 21
A hv,,
Energy fluence = energy per unit area
Define: £
— “stored fluence” r,=—= T
A GO — eXp FSIOF
- “saturation fluence”  _ hv,, s



Example: Ti:sapphire amplifier

 Pump laser has 10mJ per pulse, calculate spot size in
crystal for G, =5
Ti:sapphire:
— A,;=800nm, hv = 1.55eV = 2.48x10-1° J
— 0, =2.8x 1019 cm?
— Iy, = 0.85 J/cm?

rstor = rsat In[GO]= 1.37 J/lcm?
A=7.3x103cm?

w, =480 um

For pulse duration of 10ns, pump intensity is

| =1.37 x 108 W/cm?




Optical pumping
geometries

cooling

[// 2777777 /{/A/ Pump cavity /\—\:
I |7 ’ |Laser rod ( )<\
Technique depends on <F T oy )

properties of light source T 0
¢ D iffu Se : o (:)eat sink Diode array

Heatsink “ ]
— flashlamp, arc lamp (CW), LED i \jl/ -’

DIOdC‘
Sun Laser arraY
— Pump chambers, non-imaging Cooling

channel
concentrators
« Laser beams with poor e o c“::;?;?;?s,“g’"

o\ _ /
divergence: #[b{j ci@o
o/ N\ Laser F'be’ Lase

— laser diode elements and Microlens _crystal
arrays, multi-mode fiber- .
utpy Resonator
Coupled LDS (T Mnrror t

"M Pump Beam
— Longitudinal and side pumping 48%% e N

« High-quality laser beams e
— Longitudinal pumping

slab

7,77 Reflectors

(d)

Fig. 6.47. Major pump configurations a) side pumping with flashlamps, b) side-and edge pumping with
laser diodes, ¢) end pumped lasers, d) face pumping with flashlamps or laser diodes



Population dynamics of absorption

* Closed 2 level system, assume g,=g, dN, _ _dN,

_ 2 dt dt
I
dN
TVVN lWNz : A21N2 2:WN1—WN2—
\ 4 1 dt
« Since system is closed, reduce to one equation for
population difference: AN=N,-N, N,=N,+N,
djzvl_d52:jAN:_2dc]zvz N,=AN +2N,
aod f = N, =4(N, - av)

EAN:—z(WAN—AﬂNz)

D AN = 2w AN + A, (N, — AN )=—AN(A,, +2W )+ A, N,

dt
N
— Steady state: AN = : A.=1/7
U 1+2W1,, 21 21




Saturation of absorption

* The key parameter in this situation is W 1,; AN N,

W, =p, b, L2V,

— Low intensity, 2W 1,, << 1, AN = N, AN =N, -N,
— High intensity, 2W 1,, >> 1, AN = 0. Here N, = N,

* Energy balance:

/7 Radiated power (into 41r)

Input power

Absorbed by atoms
g \ Stimulated emission
( back into beam)

« Radiated power per unit volume:
dP NW N
— =hv,WAN (W)= hv, — > hv,, —
dV 1+2W1t,, 2y

For WT,, >> 1

Power radiated in high intensity limit: half of atoms are radiating



Saturation intensity

Absorbed power per atom: o,/

Absorption rate: S ]
hv,,
In steady state: 2 _ 1 _ 1 __ 1
N, 1+2Wr, 1+2c2‘1/21 o 1+[L
Saturation intensity for absorption: ; T hy,, &

— Atl =

sat

26127:21

<ot Stimulated and spontaneous emission rates are equal.
Intensity-dependent absorption coefficient:

o (1)

__ %

C1+1/1

sat

At high intensity, material absorbs /ess.

Saturable absorbers are used for pulsed
lasers: Q-switching and mode-locking



Relative transmission

Saturated CW propagation through
absorbing medium

* For a given thickness for an absorbing medium, the
transmission will increase with intensity

o dl 0
I)= L —=—0\l)] =—- 0
(1) 1+1/1,, dz 1) 1+1/1,
L
l+L dl =—)o,dz— In M +I(Z)_I(O):—cxoz
I ISCZZ‘ 6 I(O) ISClt

Transmission over 1 absorption length

i

03F

0.5

04

02

0.1

3

1 2
absorption lengths

0:2 0:4 0:6 0:8 1:0 | /|

sat



Pulsed input: saturation fluence ,,_,

* Rewrite equation using int

dt hv,,

« Scaling of equation

ensity:

[ ... = saturation
fluence

iAN = —AN[A21 i 2—61(1,‘)) +A,N, = —AN(A21 14 §(—Oj +A, N,

sat

— Two timescales: 1, and 1,,, but pay attention to weighting

1, _2N, T, 1

2 — AN

1—‘sat 7:p

d .
— AN =—-AN ! + L, 1 + .
dt T21 1—‘sat 7:p T21 7:21
* For short pulse input: ignore stimulated emission and
fluorescence
r 1 2N d r 1
© —|AN|>—2 > —AN=-—2—AN —In
1—‘sat Tp T21 dt Fsat Tp

— AN(t)=N,(t)-N,(t)= N, exp[

—%jl(z’)dt’

sat ()

AN(f)):|z_FLj‘I(t,)dt/

AN(O sat ()

I'.
=N, exp{— F’” }



Short pulse limit

* For short pulse input: 1,<<7,, , so ignore fluorescence
— Medium just integrates energy of pulse.

— Example: Ti:sapphire: 1,,=3.2ps, 1,=10ns or 200ns for Q-switched
Nd:YAG lasers pumped with flashlamps or CW arc lamps

e Square input pulse Gaussian input pulse
— T17=3, lylss = 0.1, (no fluorescence)
1.0 . 1.0
0.8} i \i AN(t)/N; o8} AN(t)/N,
0.6} b 0.6}
0.4} i i (Bl 04}
02} L 0.2}
L
s 10 15 20 t 15 20

« Shape of transmitted pulse is affected



Long pulse limit

- For long pulse input: 1,>>T,,, and peak | << I,
AN(t) follows I(t)

IR AN, Quasi-static, quasi-CW limit

dt N, adiabatically follows I(t)
AN 1
N, 1+1(1)/1,
10 AN(t)/N, 10 AN(t)/N,
0.6} Pt 0.6} : I
fo : |
04} " \‘ 04¢ : :
I \ I I
02t t \ 0.2} - :
/ \ 1 |
4 \ 1 |
=l " h TS A - 1 e .

—~

ok
-}
\®)
-
w .
-
~
-
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-
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o)
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O -~ N O

Gain saturation

Consider a 4-level system:

[
Rp l' Assume: T3, and 1,5 << T,4, and W,,N,
i
Look at level 2 only: Low intensity: Ny=RpT,
AN T4, Is called “storage time”
d—t2:RP -WN,—-N, /7,
Steady state: N, = Rty _ KTy _ Ry,
> 1+Wrt o, T i
21 1+ 221217 14—
hv21 Isat

Saturation intensity for gain:
— No factor of 2

Isat _ hV21 _ FW g(l) _ 8o
GZITZI T21 1 + I/Isat




Beam growth during amplification

« Calculation just as with absorption

j[l+%)d1 - +‘I£g0 dz — h{ﬂ} 1(z)=1(0) _ T

Iy

Il Il

sat sat

1(0)
Net gain over 1 absorption length

2.5}
20}

c
(]
O
o 1.5
©
ke )
2
o5t
02 04 06 08 10
Gain lengths 1/

 Even though saturated gain is low, it is efficient at extracting
stored energy



Spatial dependence

« Gain follows distribution of pump intensity
« Spatial variation of gain affects beam profile

 Examples:

— longitudinal pumping with Gaussian beam leads to gain
narrowing of spatial profile. More gain in center, less at
edges

— Saturated absorption by a Gaussian beam: saturation
In center suppresses intensity there. Leads to widening
of output beam.



Pulse amplification: saturated gain algorithm

. r I pum
Frantz-Nodvick G = Fsa; In[1+ (e seedf, —De ’%Sm]
Equation:

seed
No Spatial Dependence: Assumptions:
E *Thermal Equilibrium within Stark Manifolds
Frup =—"5 —| Frantz- | _5 Gain -Square Temporal Profile of Seed
ng Nodvick
F Seed — Seeg Gaussian Flusnee Distribution
WS

Transverse dependence: super-Gaussian 1

(=Y D\ Ax, A »nsi
_ 2 i
F(x,y) — 1_‘oe where:- nx,ny = 2 (Gaussian),

Even > 2 (Super-Gaussian)
-F, is defined via the Total Energy

and integration of the distribution *
: Define Gain Array |F,  =GeF,, Compute Post- E'
L o SD:;Itrilael > (Frantz-Nodvick for - i d) Gain Seed — Gain = —3¢4
A each element in Energy E
rrays ) : Seed
spatial array) (Integrate Spatial
Array)




Example: Ti:sapphire multipass amp

« Seed pulse from pulsed laser oscillator: 1nd (800nm)
« Amplify to 1mJ, use 7mdJ of pump energy (532nm)
* Multipass designs: spatially separate beams

Q-switched Nd:YLF

Three-mirror ring preamp:
- Up to 12 passes

- Focused beam in crystal
- 2 mirror alignment

Bowtie power amp: £

AN
d |
- Collimated beam { - S

- 8 mirrors S ity



Multipass design

Assume uniform pumping with round beams

Calculate stored fluence and small signal gain

Use saturated gain expression to calculate new energy after 15t pass
Subtract extracted energy from stored energy (over seed spot area)
Repeat for N passes

Conditions: 1nJ seed, 7mJ pump energy, 95% absorption, 10% loss/pass

Stored energy: hv

E stor — Epumpnabs hvﬂ — 44mJ

pump
Small signal gain estimate:

I/N
E 1
G,=| —| ——=442
E 1-L

seed

Estimated spot size:
E

- stor

A = T, In[G,]

, w,=300um



Multipass: Simple calculated results

- Small signal gain estimate works as long as stored energy
IS not depleted

Output energy (mJ) . Logyo[Output energy (mJ)]
30}

25F
20¢
15¢
10}
05
0.0

é lb 1-5 5 1-0 1-5
Pass number Pass number

— Smaller seed size to ensure full overlap with pump
— Avoid damage thresholds for pump and seed

— Saturate at desired energy to reduce noise
— Account for size change in Brewster cut crystal



Transverse diode bar pumping

Single-sided

For good absorption, pump 0.10
must have sufficient path 0.05

length "
-0.05 ;
Central Fluence Distribution Across Crystal ~0.10¢

=2 0

0.8 - /
i ] 0.10

06— 1 005
I - :
j j j 0.00 -

Fluence [J cm_z]

| \ aOUble-sided -

F[x]:=Exp[-a x ] + Exp[-a (x — L

Single-sided. with retro

04+
: 7 ~0.05
02" ] -0.10
00C
-2 -1 0 1 2 g
0.10F
Transverse Distance, X (mm)] :

0.05 -

Using retro: better absorption efficienc_:?x(:

~0.10F

Double-sided: better uniformity

T T T T T T I e e J—7 T 1 T T T T [ T T




Polarization issues In pumping
birefringent materials

For Ti:sapphire, both polarizations contribute to seed gain
along c-axis

Much higher pump absorption for E along c-axis

— a across c-axis is about 40% lower than along c-axis

~ B | /\ absorption /—\\ gain 20
E "l \ / \ :

< | . : r

. 4 [ Ellcy Ellc \\ :

" /|- .\ / e 10 o

= 2+ / T s
s Elc™ ) T ¢
x /

c ! = . 0N .

range ol laser oscillation

Ex: transverse pumping:

seed y
O > —

y 4



Transverse Pumping Gain Estimates

Input Seed[dr=5:ma] Initial Stored Fluence[dr=5zaa]

b
o
o

200 f}
« Seed: 2nJ :
— Cavity Losses: ~1%

Tpass: 1NS

—
n
o

150

100f

Vertical [¥]
Vertical [¥]

- Pump (CW): 1kW (Total: 2X .5kW
Bars) ;
—  Naps=63.2% %

_55 6(y 0 50 100 150 200 0 50 100 150 200
— N@p=99.67% Transverse [X] Transverse [2]

L
o

o

— - (0]
—  Npump=Nabs Nap=39-1% Output Seed[dr =5 u] Reruaining Stored Fluence[dr =5 ]
— Heat: ~560 W | *°f ]

— Significant (Cylindrical) Thermal Lens
Expected

—  w=30um

150

100 -

Vertical [¥]
Vertical [¥)

« Single Pass Gain (small signal)
— Astigmatic Seed: g=1.64
* w,=200um, wy=30pm

S0F

h c 0 g
0 50 100 150 200 0 50 100 150 200

— Spatially Chirped Seed: g=1.64 Trusverse [X] Trmsverse [3]

PSSR Multi-Pass Extraction: 37 Passes
-Astigmatic Mode: ~136ud (small extraction area)
-Spatially Chirped:~.53mJ (46% extraction)

Central dip in gain: spatial gain mode expansion.
This could be used to counter gain narrowing for spatially-chirped seed




Frequency dependence: account for
lineshapes

* Absorption and gain coefficients and saturation
intensity both depends on frequency

o, (v—v,)
1(v)
1+ Isat(v_vO)
* For broadband input, saturation changes shape of
transmitted spectrum

— Absorption: power broadening
— Gain: spectral gain narrowing

a(l,v)=




Amplified Spontaneous Emission (ASE)

« Spontaneous emission is emitted into 41 steradians, but is
amplified on the way out if there is gain.

D

9

L
— ASE can be considered to be a noise source

— ASE is more directional than fluorescence, but not as directional
as a coherent laser beam

— Some high-gain lasers are essentially ASE sources (no mirrors)

 Implications for amplifier design
— ASE can deplete stored energy before pulse extraction

— Use timing and good seed energy to extract energy from medium
before ASE

— Ensure that transverse gain is smaller than longitudinal to avoid
parasitic depletion.



Self-absorption and “optically-thick” media

* Arelated phenomenon for an absorbing medium is when
radiation is absorbed along the way out.

 More absorption near the line center, so the transmitted
light is broader in spectrum.

* For an extended luminous body (e.g. the Sun), the

iIndividual spectral lines get merged together to look like
the blackbody.



Interference: ray and wave pictures

Interference results from the sum of two waves with
different phase:

Etot (A¢) = EleikZ + E2eikz+A¢

« We measure intensity, which leads to interference

. . 2 . 2
I,,(A9) < |E " +E,e™™| =|E +E,e™

=1, +1,+I,1,e™ +II,e™
=1,+1,+21,1, cos(A9)
— For the case where [, =1,

I, (A9)=2I(1+cos(Ap))=41Icos*(A¢/2)

How to generate, calculate phase difference?



The Fizeau /
Wedge @ LA

Interferometer

The Fizeau wedge
yields a complex
pattern of variable-width
fringes, but it can be
used to measure the
wavelength of a laser A
beam. L=

© V Beam-splitter

Spacer



Fizeau wedge calculation

* Interference between reflections from internal surfaces
\

L

— Angle is very small, neglect change in direction
— Path difference: Al=2Lsina=2La

— Phase difference: A¢ = LN an_La n=1
A

C

— Interference: I, (A®)=1,+1,+21,I, cos(A¢)
— One fringe from one max to the next, so maxima are at A¢=27mm

* In this interferometer, minimum path = 0, we can measure

2L 2L
absolute wavelength: A¢=27m= 27:704 A=«

m



Newton's Rings




Newton's Rings

Get constructive interference when an integral number of half
wavelengths occur between the two surfaces (that is, when an
integral number of full wavelengths occur between the path of the
transmitted beam and the twice reflected beam).

Twice| |Transmitted
reflected beam

beam

Curved surface

Flat surface

Incident
beam

This effect also causes the colors in
bubbles and ail films on puddles.



Tilted window: ray propagation

« Calculate phase shift caused by the insertion of the
window into an interferometer.
* Ray optics:
— Add up optical path for each segment
— Subtract optical path w/o window
Ad=nL,,+L,.—L,, —L,. |
L L

— w — w
cos6, cos 0,

L,-=Lgy. + Ly, sinG,

— Use Snell's Law to reduce to: g,

Ad=nL cosO,—L cos6,




Tilted window: wave propagation

Write expression for tilted plane wave

E(x,z)=E, exp[i(kxx + kzz)] =E, exp{ign(x sinf, + zcos6, )}
c

Snell’s Law: phase across surfaces is conserved

® . :
k.x=—nsin@ is constant i
c

Ap = (k2 cos@z)LW —

This approach can be used
to calculate phase of prism
pairs and grating pairs




Multiple-beam interference:
The Fabry-Perot Interferometer or Etalon

A Fabry-Perot interferometer is a pair of parallel surfaces that reflect
beams back and forth. An etalon is a type of Fabry-Perot etalon, and is
a piece of glass with parallel sides.

The transmitted wave is an infinite series of multiply reflected beams.




Multiple-beam interference: general formulation
Z_Z_l ei5/2 EO

Transmitted _ )
wave: E,, A? 1t e®? r’) o Eo

) 2
- tt/ezﬁ/z (I",) ei6) E

\ / i6/2((r/)2 i )3

It e e

Incident wave: E,

Reflected
wave: E,,

E

0

r, t = reflection, transmission coefficients from air to glass
r,t= * “ “ from glass to air

O = round-trip phase delay inside medium = k,(2 n L cos 6,)

Transmitted wave:
E, =tt'e®"E,

0r

L+ () € +(() ) +((r) ¢®) +...

Reflected wave: ,
) 2 s
Ey, =By + 17" Ey+ 167 (') € ) Ey+...



Stokes Relations for reflection and transmission

(a)

“Time reversal:”
Same amplitudes,

reversed propagation
direction

Notes:

- relations apply to angles connected by Snell’ s Law
* true for any polarization, but not TIR

« convention for which interface experiences a sign change can vary



= |E, =tE,/(1-r*¢")

{

Fabry-Perot transmission

The transmitted wave field is:

E, =1t'e""E, 1+(r’)2 e’ +((r')2 e’ )2 + ((r')2 e’ )3 S

)

Where:

. . o \2 .o\3
=tt'e’5/2E0 1+r26’5+(rze’5) +(rze’5) +,

Stokes’

r’'=—r

relations =7

it =1—r?

(l—x)_1 =1+x+x>+x"+---

()

2 . 2
) E r_i6/2
Power transmittance: 7 =| %o —| ¢ 6‘ _
E, 1=r%

() _ (1-r)? _
{1+r* =21 cos(d)} {1+7*=2r°[1-2sin*(8 / 2)]}

- (1 72 +16)(1 52 —16)

(1-r")

Dividing numerator and denominator by (1—7°)’

1
1+ Fsin’ (5/2)

T =

where:

F =

Ll —2r +r* +4r°sin’ (8 / 2)]}




Multiple-beam interference: simple limits
1

Reflected waves T =
1+ Fsin’ (5/ 2)

Full transmission: sin()=0,d=2mm

P 1st reflection
3 g
4 = } internal

reflections

Destructive interference
for reflected wave

L
E,, = 0 (Resultant amplitude)

Minimum transmission: sin( ) =1, d =2 n (m+1/2)

|

=
>

{Resultant amplitude) Eo,

Constructive interference for reflected wave



Etalon transmittance vs. thickness,

wavelength, or angle - 1
- —
7 N7 TV 1+ Fsin (5/2)

Transmission max;
r?=0.18 sin()=0,d=21m

5=92nLcos[9t]
c

I z-o‘s’] =27l'm
0 F=20 At normal incidence:
-2r -m 0 = 2n 3 4r & nL ﬂ,
A, = or nL=m—2
m 2

* The transmittance varies significantly with thickness or wavelength.
« We can also vary the incidence angle, which also affects .

« As the reflectance of each surface (R=r?) approaches 1, the widths
of the high-transmission regions become very narrow.



The Etalon Free Spectral Range

The Free Spectral Range is the wavelength range between
transmission maxima.

Aesg =
Free Spectral
Range

For neighboring orders:

Adnnl. 4mnl 1
— =2 = —-
A A, A
)‘2 _;L' - )‘F SR A ~ )“2 A‘FSR — 2‘ — VFSR VFSR = _C
M =X B onL A 2nlL v 2nlL

1/(round trip time)



Etalon Linewidth

The Linewidth oLw is a transmittance peak's full-width-half-max (FWHM).

1

T:1+Fsin2(5/2)

A maximum is where §/2=mx+8’/2 and sin’(6/2)=6"/2

Under these conditions (near resonance),
1

T = >
1+ Fo’" /4

This is a Lorentzian profile, with FWHM at:

2
E[%] 1= 5, ~4F

4\ 2

This transmission linewidth corresponds to the minimum resolvable
wavelength.




Etalon Finesse

The Finesse, 3, is the ratio of the
Free Spectral Range and the Linewidth:

O = 2m corresponds

/ to one FSR

3=5FSR _ 2rm 7 F

Q= taking 7 = 1

The Finesse is the number of wavelengths the interferometer can resolve.



Multilayer coatings

Typical laser mirrors and camera
lenses use many layers.

The reflectance and transmittance
can be custom designed

Air

o

ny ny,
Uz Ny
s Glass substrate

gHLa

Double-quarter

Alir

Glass substrate

gHLHLHLa
g(HL)%a

Quarter-wave stack




Multilayer thin-films:
wave/matrix treatment

 Use boundary conditions to relate
fields at the boundaries

* Phase shifts connect fields just after I
~ to fields just before II

» Express this relation as a transfer

matrix

* Multiply matrices for multiple layers




High-reflector design

10 periods

|

100 (— W

2 periods

Reflectivity can reach > 99.99% at a specific wavelength
> 99.5% for over 250nm
Bandwidth and reflectivity are better for “S” polarization.



Transmission %

Interference filter design

=
Ly p ey ey L

s}
PR
.
5
& 5
K
-

L
~

3 0995 " 1 ' ' 1.005

(_.) T T T T T

Al ——

A thin layer is sandwiched between two high reflector coatings
-very large free spectral range, high finesse
- typically 5-10nm bandwidth, available throughout UV to IR



Raytracing: single curved interface

2= tan(6, - ) ~ 6, — ¢
Snell: n,sin(6,)=n, sin(6,) p

&:tan((p—er)x ®—0.
q

- =sin(9) = ¢

. s N ot 1 4 1 c ’

ny _ sin(6,) 6 ¢ty wmty_wmty In paraxial appx, y’ s cancel
. e N N 1 1

n Sln(9r> 91’ ¢ q R q R q



Raytracing: two curved interfaces

- add second interface: R > 0 if center is to right
- assume Yy,=Y,
Eqgn from 1st:

Adapt to 2nd interface:
n<on qg—q P—>—4q




Raytracing
* Approches:

— Paraxial tracing (assume small angle to optical axis)

— Computer tracing (no approximations). Example: Zemax, Oslo,...

* Design procedure
— Find existing design close to what could work
— Paraxial trace with ray diagram
 Calculate magnification, limiting apertures
— Optimize with ABCD matrices or computer program
— Analyze aberrations



ABCD ray matrices

« Formalism to propagate rays through optical systems
— Keep track of ray height r and ray angle 6 = dr/dz=r

— Treat this pair as a vector: .

’

r

— Optical system will modify both the ray height and angle, e.g.

sy

— Successive ABCD matrices multiply from the left

- Translation - —

r,=r+Lr |7 Iy r2
%

r__
rh,=n



Refraction in ABCD

_ 1 L
Translation: | 4

 Flat interface o v | n,
r,=r n,sin@, = n, sin6, —>£ 0 nin, } /./
n,0, = n,0,
r, = ﬂrl’ Special case: ( 1 0
" n,=1,n,=n 0 1/n

-
-

J

Window: calculate matrix

Lo ot )
o0 kot o

Effective thickness reduced by n

L/n
1

J



Curved surfaces in ABCD

« Thin lens: matrix computes transition from one side of lens
to other

« Spherical interface: radius R

1 0
—| n—-n,1 n

n, R n,




Curved wavefronts

» Rays are directed normal to surfaces of constant phase
— These surfaces are the wavefronts
— Radius of curvature is approximately at the focal point

» Spherical waves are solutions to the wave equation (away

fromr=0) | (eirory  Scalarr
e’ E o< € + outward
V°E+ " E=0 Ioci - inward

2
r



Paraxial approximations

* For rays, paraxial = small angle to optical axis
— Ray slope: tan0 =0

* For spherical waves where power is directed forward:

e = exp[ik\/x2 +y° +7° }

2

2 2 2 ;
k\/x2+y2+Z2:kZ\/1+x ) szLHX Ty ] Expanding to

7’ 277 1st order

2 2

] -t ikz . + . .

1) s otk exp[z(kx 5 L —a)tﬂ Z is radius of curvature
Z

x*+y?

Wavefront = surface of constant phase &k 5
Z

For x, y >0, t must increase.
Wave is diverging: /(7

=t




3D wave propagation

2 92 0’ n(r)” o°
VE-2 2 gE=2 E+V E- E=0
¢ ot? 07° ¢t or’
. Note: =0,+9,

V2=13,(rd, )+ =32
r

r

— All linear propagation effects are included in LHS:

diffraction, interference, focusing...

— Previously, we assumed plane waves where transverse

derivatives are zero.

* More general examples:
— Gaussian beams (including high-order)
— Waveguides
— Arbitrary propagation

— Can determine discrete solutions to linear equation (e.g.
Gaussian modes, waveguide modes), then express fields

in terms of those solutions.




Paraxial, slowly-varying approximations

 Assume
— waves are forward-propagating:
E(r,t)= A(r)ei(kz_wot) +c.c.
— Refractive index is isotropic
9 A2k A kALY A+
0z 0z C
— Fast oscillating carrier terms cancel (blue)
« Slowly-varying envelope: compare red terms
— Drop 2" order deriv if 271 1

——A> —2A
AL L

A=0

— This ignores:

* Changes in z as fast as the wavlength
« Counterpropagating waves



Gaussian beam solutions to wave
equation
* Without any source term, paraxial equation is

2ikiA+VjA =0
0z

 (Gaussian beam solutions can be written as:
1 e_wé(rlﬂ'é) g== w, _ kwg

1+i& <R S A - 2

Rayleigh range

A(r,z)= A,




Standard form of Gaussian beam equations

r . kr?

E(F,Z,t)=AO W ei(kz—a)t)e wz(z)e 2R(2) ,in()

2
Z
w(z)=w0 1+— .:@ -
7 )
ZR
, *|R(2) 1/R(2)
Z 10 0.2
R(Z) = Z(l T _123] | | L/ | | | |
Z -10 -5 5 10 -10 -5 5 10 Z/ZR
~10 Z/ZR \j
Gouy phase %!
2 b : o Z[z
77(2) = arctan| — st R
<R o




Complex q form for Gaussian beam

* This combines beam size and radius of curvature
Into one complex parameter

— This form is used for for ABCD calculations

2 . r2

1 ~2ie _ 1 50
A ,Z)= 0 — A Z)=——e€
(re)=A iz ()=
11 _; A
q(z) R(z) 7w (z)
, ' | 1 _ Z
_ _ < _ <R R _ 2\ 2_|_ 2
q(z) z+izg 7 +2z, lZ2+z,2e 2) Z(1+§§j € T
1 ; W
== - 2
RQ) L1 g
1 A 1 1 w (Z) 2( 4 i wg(zz"‘zi
= —1 > — —1 WO + 2
R(z) =#w’(z) R(z) Z(z) <R



Complex g vs standard form

L 50 - 1 1 _,_ 4
ulr,z)=—-—e th = —1
2= 00 with )

Expand exponential:

exp{—ik zgzz)} - exp{—ikr; (R ”

=ex —ikr2 : _i27t r” —i : —e_ikzlrezz)e W;:Z)
P 2 R(z) A2 #w(2)

a—+ lb — Weiarctan(b/a)

| —
I

S

—

N

~

N—

| —

Expand leading inverse qQ:

1 [ 17 <Zp j_ .[\/Z2 +Z12g }eiarctan(z/zlg)

+ =—i
2 2 2 2 2 2
otz 2tz 2"+ 2,

— 1 eiarctan(z/zR) = - Wo ein(z)
Ze1+2° 12 izw(z)



Difference between Siegman’s
complex q and standard form

}"2 I’2
_'k
"R() o V0

e

u(r,Z):Le_ikz‘r’(Z) L ¢

Q(Z) 1Zp W ( )

E(F,Z9t) — AO WO e(kz wt)e Wz(Z)e 2R(Z) —iTI(Z)

« Siegman’s form for the complex q is used almost
everywhere for the ABCD calculations.

 He uses the exp[+ | w t] convention, which accounts for
the sign difference in the complex exponentials.

« With exp[-l w t] convention, define q as:




Compare Boyd’s form to standard:

Boyd’'s complex form is consistent with standard
Gaussian beam form

1 _wz(’iﬂf) 1 _wz(l-:iz/z )
Alr,z)= e’ = e’ K
(r:2) A01+i<§ A01+iz/zR

1 1 Zp —1Z,  —lZp

1+i& 1+iz/z4 - Zptiz - 2—1Z, - q(z)

1 1 +£61(Z)

A(r,z)= A, (—izR)—)e de) — _jz A @e



