
MATH 348 - Advanced Engineering Mathematics October 31, 2009
Homework 8, Fall 2009 Due: November 26, 2009

Fourier Transforms

1. If a function is not periodic nor can it be periodically extended then the function has no Fourier series representation.
However, in this case the function can have a Fourier integral representation. Analysis of the Fourier integral representation1

reveals the complex Fourier transform pairs:

f(x) =
1√
2π

∫ ∞
−∞

f̂(ω)eiωxdω, f̂(ω) =
1√
2π

∫ ∞
−∞

f(x)e−iωxdx (1)

We can connect this transform pair to the complex Fourier series. If a function is periodic then there exists a representation
of the function in the countably-infinite basis of imaginary-exponential functions. In this case the coefficients2 of this
expansion are given by an integral whose limits of integration are bounded.3 These coefficients quantify the amplitude
of oscillation for each discrete frequency of oscillation.4 In the case of f(x), as above, we have that the function f has a
representation in the uncountably-infinite basis of imaginary-exponential functions. In this case the coefficients are given
by the previous integral whose limits of integration are unbounded.5 These coefficients quantify the amplitude of oscillation
for each continuous frequency of oscillation.

Now, we want to connect all of this to sections 11.7 and 11.8 in our text. We have that the Fourier integral represents
functions in the sine/cosine basis without requiring the function to be periodic. Now, what role does symmetry play in this
representation? With minimal work we see that if a function is even/odd then the Fourier integral reduces to a Fourier
cosine/sine integral.6 As with our original derivation of transform, if we look at the interplay between the coefficient
functions A(ω)/B(ω) and f(x) we find the transform pairs:

fc(x) =

√
2
π

∫ ∞
0

f̂(ω) cos(ωx)dω f̂c(ω) =

√
2
π

∫ ∞
0

f(x) cos(ωx)dx (2)

fs(x) =

√
2
π

∫ ∞
0

f̂(ω) sin(ωx)dω f̂s(ω) =

√
2
π

∫ ∞
0

f(x) sin(ωx)dx (3)

We call (2) the Fourier cosine transform pair and, surprisingly, we call (3) the Fourier sine transform.

(a) Show that fc(x) and f̂c(ω) are even functions and that fs(x) and f̂s(ω) are odd functions.7

(b) Show that if we assume that f(x) is an even function then (1) defines the transform pair given by (2). Also, show that
if f(x) is an odd function then (1) defines the transform pair given by (3). 8

Given,

f(x) =

{
A, 0 < x < a

0, otherwise
, A, a ∈ R+. (4)

(c) On the same graph plot the even and odd extensions of f .

(d) Find the Fourier cosine and sine transforms of f .

(e) Using the Fourier cosine transform show that
∫ ∞
−∞

sin(πω)
πω

dω = 1.

1See classnotes or Kreyszig pgs. 518-519
2also called weights

3Recall that our derivation lead to cn =
1

2π

Z L

−L
f(x)eiωnxdx where ωn =

nπ

L
.

4That is, for each ωn there is a corresponding cn where |cn|2 is a measure of the power of the sinusoids associated with ωn.
5In this case the behavior of f must be known everywhere instead of on the interval (−L,L).
6Kreyszig pg. 511
7Thus, if an input function has an even or odd symmetry then the transformed function shares the same symmetry.
8Thus, if an input function has symmetry then the Fourier transform is real-valued.
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2. Calculate the following Fourier sine/cosine transformations. Please include the domain which the transformation is valid.

(a) Fc(e−ax), a ∈ R+

(b) F−1
c

(
1

1 + ω2

)
(c) Fs(e−ax), a ∈ R+

(d) F−1
s

(√
2
π

ω

a2 + ω2

)
, a ∈ R+

3. Calculate the following transforms:

(a) F {f} where f(x) = δ(x− x0), x0 ∈ R.9

(b) F {f} where f(x) = e−k0|x|, k0 ∈ R+.

(c) F−1
{
f̂
}

where f̂(ω) =
1
2

(δ(ω + ω0) + δ(ω − ω0)) , ω0 ∈ R.

(d) F−1
{
f̂
}

where f̂(ω) =
1
2

(δ(ω + ω0)− δ(ω − ω0)) , ω0 ∈ R.

(e) Find f̂(ω) where f(x+ c), c ∈ R.

4. The convolution h of two functions f and g is defined as10,

h(x) = (f ∗ g)(x) =
∫ ∞
−∞

f(p)g(x− p)dp =
∫ ∞
−∞

f(x− p)g(p)dp. (5)

(a) Show that F {f ∗ g} =
√

2πF {f}F {g}.

(b) Find the convolution h(x) = (f ∗ g)(x) where f(x) = δ(x− x0) and g(x) = e−x.

5. Given the ODE,
y′ + y = f(x), 0 < x <∞. (6)

(a) Calculate the frequency response associated with (6). 11

(b) Calculate the Green’s function associated with (6).

(c) Using convolution find the steady-state solution to the (6) for when f(x) = δ(x).

9Here the δ is the so-called Dirac, or continuous, delta function. This isn’t a function in the true sense of the term but instead what is called a

generalized function. The details are unimportant and in this case we care only that this Dirac-delta function has the property

Z ∞
−∞

δ(x−x0)f(x)dx =

f(x0). For more information on this matter consider http://en.wikipedia.org/wiki/Dirac_delta_function. To drive home that this function is

strange, let me spoil the punch-line. The sampling function f(x) = sinc(ax) can be used as a definition for the Delta function as a → 0. So can a

bell-curve probability distribution. Yikes!
10Here wee keep the same notation as Kreysig pg. 523
11this is often called the steady-state transfer function
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