
Chapter 2

Waves and Modes in One and Two

Spatial Dimensions

There are a number of different techniques for solving the 1-D wave equation:

∂2u

∂t2
= c2

∂2u

∂x2
(2.0.1)

Perhaps the oldest is the method of traveling waves. In this method we look for solutions
of the form u(x, t) = f(x+ ct) and u(x, t) = f(x− ct). Using the chain rule you can see
that

∂u

∂t
= ±cf ′

where the prime denotes differentiation with respect to the argument (x+ct for instance).
Similarly

∂2u

∂t2
= c2f ′′

∂2u

∂x2
= f ′′.

As a result, any differentiable function evaluated at x± ct is a solution of the 1-D wave
equation. Think of the function f as representing some shape. As time increases x must
increase at the rate ct in order for the shape to have the same value. This means that
the shape, evaluated at x − ct, is actually moving to the right at a constant speed of c.
Similarly x+ ct is moving to the left at speed ct.
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2.1 1-D Separation of Variables: Summary of the

Argument

Another approach to solving linear PDE’s (not just the wave equation) is separation of
variables. In certain coordinate systems we can find solutions which are factored. This
means that the multivariate solution can be written as the product of univariate func-
tions. The wave equation is separable in many coordinate systems, including Cartesian,
spherical, and cylindrical.

Here is an overview of the argument for one spatial variable in Cartesian coordinates.

We want to solve
∂2u

∂t2
= c2

∂2u

∂x2
(2.1.1)

such that, for example, u(0, t) = u(l, t) = 0 (clamped ends) and u(x, 0) = u0(x) and
∂u/∂t(x, 0) = v0(x) where u0 and v0 represent the initial displacement and velocity.

Guess a solution of the form u(x, t) = X(x)T (t). This doesn’t always work. Plug this
into Equation 2.1.1 and divide by XT .

This gives

c2
X ′′

X
=
T̈

T
. (2.1.2)

This is an equation involving only x on the left and t on the right. The only way this
can be true is if both sides are constant. Call this constant −ω2.

So u = XT reduces (2.1.1) to two ODE’s:

T̈ + ω2T = 0 (2.1.3)

and

Ẍ +
ω2

c2
X = 0. (2.1.4)

Solve these as usual:

T (t) = A cos(ωt) +B sin(ωt) (2.1.5)

X(x) = C cos
(

ω

c
x
)

+D sin
(

ω

c
x
)

(2.1.6)

with A,B,C,D arbitrary constants.
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The clamped end boundary conditions imply that X(0) = X(l) = 0. Therefore C = 0
and ω/c = πn/l. Leaving:

T (t) = A cos
(

πnc

l
t
)

+B sin
(

πnc

l
t
)

(2.1.7)

X(x) = D sin
(

πn

l
x
)

(2.1.8)

Or,

u(x, t) = DA sin
(

πn

l
x
)

cos
(

πnc

l
t
)

+DB sin
(

πn

l
x
)

sin
(

πnc

l
t
)

. (2.1.9)

Let’s relabel the constant DA, calling it A, and DB, calling it B. Then

u(x, t) = A sin
(

πn

l
x
)

cos
(

πnc

l
t
)

+B sin
(

πn

l
x
)

sin
(

πnc

l
t
)

. (2.1.10)

This solution obviously will not satisfy general initial conditions. However, linearity of
the wave equation guarantees that if

A sin
(

πn

l
x
)

cos
(

πnc

l
t
)

+B sin
(

πn

l
x
)

sin
(

πnc

l
t
)

(2.1.11)

is a solution, then so is

∑

n

An sin
(

πn

l
x
)

cos
(

πnc

l
t
)

+Bn sin
(

πn

l
x
)

sin
(

πnc

l
t
)

(2.1.12)

where An and Bn are arbitrary constants.

Now we have some hope of satisfying the initial conditions. Let’s see. If

u(x, t) =
∑

n

An sin
(

πn

l
x
)

cos
(

πnc

l
t
)

+Bn sin
(

πn

l
x
)

sin
(

πnc

l
t
)

(2.1.13)

then

u(x, 0) =
∑

n

An sin
(

πn

l
x
)

(2.1.14)

and
∂u(x, t)

∂t
=
∑

n

Bn
πnc

l
sin

(

πn

l
x
)

. (2.1.15)

So this scheme will work if and only if we can choose the constants An and Bn such that

u0(x) =
∑

n

An sin
(

πn

l
x
)

(2.1.16)
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and

v0(x) =
∑

n

Bn
πnc

l
sin

(

πn

l
x
)

. (2.1.17)

This is our first example of a Fourier series. We will explore this last conjecture in detail.
That this should be possible is not remotely obvious in my opinion and that it is true is
one of the great triumphs of 19th century mathematical physics.

What’s the simplest solution we could construct? We would displace the string into one
of it’s normal modes, initially at rest, and then let go. This corresponds to making all
the Bn coefficients in 2.1.13 equal to zero (since the initial velocity is zero) and letting
all but one of the An be zero. For instance, if we displace the string into its fundamental
mode (sin(nπx/l), for n = 1) then the complete solution is

u(x, t) = sin(πx/l)cos(πct/l). (2.1.18)

That’s it. Notice that if you start the system out in one of its normal modes it stays there
forever. In a linear system there is absolutely no way to transfer energy amongst the
modes. Later on we’ll be able to prove this directly: the energy of each mode is constant,
so whatever energy a particular mode starts out with, it stays that way forever. (This is
not too hard to prove. Why don’t you give it a try. Just compute the energy (kinetic +
potential) and integrate over one complete period of the motion.)

The symbol to the left indicates that on the WWW page you will find a Mathematica

notebook; in this case one that solves the 1D problem for initial conditions corresponding
to the string being pulled up in the middle and released at t = 0. We use Mathematica’s
built-in Fourier series capability to represent a “hat” function as a 6 term sine-series.
(Don’t worry about the details of the Fourier analysis, we’ll be covering that later.) But
download this notebook and run it. You’ll see a beautiful and realistic animation.

The results of running this code are shown in Figure 2.1.

2.2 2-D separation of variables

Separation of variables for the 2-D wave equation proceeds in the same way.

c2
(

∂2u

∂x2
+
∂2u

∂y2

)

=
∂2u

∂t2
(2.2.1)

We assume a solution of the form

u(x, y, t) = X(x)Y (y)T (t). (2.2.2)

Equation 2.2.1 then becomes (after dividing by XY T )

c2
(

X ′′

X
+
Y ′′

Y

)

=
T̈

T
. (2.2.3)
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Figure 2.1: 4 of the 50 time snapshots of the plucked string. To compute this I approxi-
mated a triangular initial displacement by a 6 term Fourier series. This series is slowly
convergent since the triangle function is not differentiable in the middle. But 6 terms are
good enough to get a feel for what’s happening.

As in 1-D, for this to be true, both sides of this equation must be constant. Let’s call
this constant −ω2. 1 So we have

T̈

T
+ ω2 = 0 (2.2.4)

and

c2
(

X ′′

X
+
Y ′′

Y

)

= −ω2. (2.2.5)

Let’s rewrite this last equation as

X ′′

X
+
ω2

c2
= −Y

′′

Y
. (2.2.6)

We can apply the standard separation of variables argument again: an equation of x
on the left and an equation of y on the right; this must mean that both sides equal yet
another constant. Let’s call this one k2

y (for reasons that will become apparent shortly):

X ′′

X
+
ω2

c2
= −Y

′′

Y
= k2

y. (2.2.7)

So we have two de-coupled ODE’s for the spatial variables

X ′′ +

(

ω2

c2
− k2

y

)

X = 0 (2.2.8)

1You should convince yourself that it doesn’t matter what we call this constant, plus, minus, with or

without the square. It all works out the same in the end.
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and

Y ′′ + k2
yY = 0. (2.2.9)

We can preserve the symmetry of these two equations by inventing a new label for c2−k2
y .

We’ll call this k2
x. Then we have the nice pair of equations

X ′′ + k2
xX = 0 (2.2.10)

Y ′′ + k2
yY = 0 (2.2.11)

where, because of how we’ve defined kx we have

ω2

c2
= k2

x + k2
y. (2.2.12)

The constants kx and ky have the dimensions of reciprocal length. ω
c

is one over the
wavelength, times 2π.

So we’ve successfully reduced the 2-D wave equation, which is a partial differential equa-
tion in two space variables and time, to three un-coupled ODE’s. We already know how
to solve these equations, so let’s consider an interesting particular case. Let’s consider
a rectangular drum (a thin membrane, clamped on the sides) of lengths Lx and Ly.
We’ll put the origin of the coordinate system at x = 0, y = 0. Then in order for the
displacement to be zero at x = Lx and y = Ly, we must have

X(x) = A sin(kxx) (2.2.13)

Y (y) = B sin(kyy) (2.2.14)

where A and C are constants and kx = nπ/Lx and ky = mπ/Ly where m and n are
arbitrary integers. So the spatial variation of the drum’s vibration must be proportional
to

sin
(

nπx

Lx

)

sin

(

mπy

Ly

)

. (2.2.15)

Now since
ω2

c2
= k2

x + k2
y

we have
ω2

c2
= π2

(

n2

L2
x

+
m2

L2
y

)

(2.2.16)

As n and m vary over the integers, ω defines a doubly-infinite set of resonant frequencies.
The same argument we made before about initial conditions applies here. To be able to
solve a general initial value problem we need to be able to represent the initial conditions
in a Fourier series. This will be a 2-D Fourier series in x and y but that’s not a big deal.
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Figure 2.2: The first four modes of a rectangular drum. The aspect ratio of the drum is
1.5. The sides are clamped, so the displacement must be zero on the edge.

2.3 An Example

Here is a simple piece of Mathematica code that will draw the modes of a rectangular
plate.

Lx = 1.5;

Ly = 1;

c = 1;

d[x_,y_,m_,n_]= Sin[m Pi x/Lx]Sin[n Pi y/Ly];

w[n_,m_] = c Sqrt[(m Pi /Lx)^2 + (n Pi/Ly)^2];

Do[

Do[

ContourPlot[d[x,y,m,n],{x,0,Lx},{y,0,Ly},

AspectRatio->Ly/Lx];

,{m,2}];

,{n,2}];

The results of running this code are shown in Figure 2.2.
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Figure 2.3: A perspective view of mode 3-2.

And in Figure 2.3 is a 3D perspective view of one of the modes. On the WWW page
you’ll find a Mathematica notebook that animates this.

2.4 Degeneracy

When we studied the Zeeman effect we saw that in the absence of a magnetic field, all
three degrees of freedom oscillated with the same frequency. Applying a magnetic field
splits this degenerate frequency into 3. The same thing happens with the drum. The
expression we derived for the frequency of oscillation was

ω2
n,m = c2π2

(

n2

L2
x

+
m2

L2
y

)

.

Attaching the subscript to ω is a good reminder that it depends on the mode. Now,
clearly if Lx = Ly, then ωi,j = ωj,i. This is degeneracy. If Lx is just slightly different
than Ly, then the frequencies are different. But even if the frequencies are the same, the
modes n − m and m − n are clearly different. For example, in Figure 2.4 you will see
plots of the modes n = 1 m = 2 and m = 1 n = 2 for a drum for which Lx = Ly = 1.
The two modes have different vibrational patterns, but the same frequency.

Suppose we excited the drum at a frequency ω12 = ω21? What sort of pattern of nodal
lines would we see? Like waves, modes will interfere constructively or destructively. This
is a very interesting topic and we only touch upon it. But if the modes 12 and 21
were to constructively interfere, we would expect to see a vibrational pattern such as in
Figure 2.5.

Finally we point out an interesting connection between number theory and normal modes.
Let us rewrite our expression for the eigenfrequencies as

ω2
n,m =

c2π2

L2
x

(

n2 +m2L
2
x

L2
y

)

.
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Figure 2.4: Modes 21 (left) and 12 (right) for a square drum.
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Figure 2.5: The sum of the two modes 12 and 21.
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Let’s suppose, just to keep life simple, that c is equal to Lx/π. And let’s call the ratio
L2

x

L2
y

= ξ, so we have

ω2
n,m =

(

n2 + ξm2
)

.

So the number-theoretic question I want to ask is: are there integers i, j and p, q such that
the two frequencies ωi,j and ωp,q are equal? If they are equal then we have a degeneracy,
if not, we don’t. In other words, under what circumstances is it true that

p2 + ξq2 = i2 + ξ2?

Clearly this will be true if and only if

p2 − i2 = ξ(j2 − q2).

Assuming that j 6= q of course, this implies that

p2 − i2

j2 − q2
= ξ.

Since all of the numbers p, q, i, j are integers, this equation can only be true if ξ is a
rational number. Therefore we have proved that if the ratio of the lengths of the sides of
the drum is irrational, then there is no degeneracy. The Greeks, who knew all about har-
monics of music, described sides whose ratio was irrational as being “incommensurate”,
a word that means not measurable. The Platonists had a theory that the universe was
made of whole numbers. One would be a point. Two would be a line joining two points,
three would be a triangle, and so on. They thought that everything could be built up
out of these basic unit. It was a shock therefore to discover that the diagonal of a unit
square was incommensurate: it could not be measured by any ruler made from the side
of the square. No matter how finely you made the lines of the ruler, the diagonal would
fall somewhere in between two lines. And not mid-way either, somewhere off to one side
or the other.

2.5 Pictures of Modes

I’ll conclude this chapter with some pictures of real modes. A “stadium” is a geometrical
shape consisting of two circles on the end of a rectangle. The stadium shape has an
important role in modern theories of chaos. Figure 2.6 shows two modes of such a shape
visualized by dropping sand. The sand collects on node lines (i.e., places where the
displacement is zero). These are called Chladni figures.

This particular stadium consists of an aluminum plate 194 mm long by 100 mm wide by
about 3 mm thick. The plate is attached via a screw through a hole in the middle to a
resonator. The whole system is driven by an HP function generator putting out a 10 volt
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Figure 2.6: Chladni figures of two normal modes of a stadium plate. The mode on the
left has a frequency of 1754 Hz and the one right 2116 Hz.

Figure 2.7: Displacement of the stadium plate at two different times when being driven
in one of its normal modes. The measurement was performed with a laser-Doppler
vibrometer.

RMS sine wave at the frequencies indicated in the caption. For more Chaldni figures of
the stadium plate, see my web page.

Figure 2.7 shows a different visualization of a mode of the stadium. These are two
snapshots of the instantaneous displacement of the plane when being driven in one of its
modes. The measurements were made with a laser-Doppler vibrometer.

2.6 Spherical and Cylindrical Harmonics

In this section we will apply separation of variables to Laplace’s equation in spherical and
cylindrical coordinates. Laplace’s equation is important in its own right as the corner-
stone of potential theory, but the wave equation also involves the Laplacian derivative,
so the ideas discussed in this section will be used to build solutions of the wave equa-
tion in spherical and cylindrical coordinates too. The treatment given here is completely
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standard and I have nothing new to say on the subject. The results are given here for
convenience; but many excellent textbooks cover the same ground. A particular favorite
of mine, for undergraduates, is Classical Electromagnetic Radiation by Heald and Marion
[5].

Spherical coordinates are important when treating problems with spherical or nearly-
spherical symmetry. To a first approximation the earth is spherical and so is the hydrogen
atom, with lots of other examples in-between. Before we treat the wave equation, let’s
look at the simpler problem of Laplace’s equation:

∇2ψ(x, y, z) = 0. (2.6.1)

In Cartesian coordinates this is:

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
(2.6.2)

Laplace’s equation is fundamental in geophysics since it describes the behavior of static
electric and gravitational fields outside of the regions where this is charge or matter.
For example, a point charge q at the origin creates an electric potential ψ(r) = q

r
.

As an exercise, carry out the differentiations of 1
r

= (x2 + y2 + z2)
−1/2

and show that
∇2ψ(x, y, z) is identically zero for r > 0, where the charge is located.

Joseph Louis Lagrange introduced the idea of potentials into his work
on gravity. Lagrange is almost universally described as one of the great
French mathematicians, but he was actually born in Turin (in what is
now Italy) and baptized in the name of Giuseppe Lodovico Lagrangia.
Lagrange, who worked for over 20 years in Berlin, made fundamental
contributions in nearly all areas of mathematics and physics, in

particular astronomy, the stability of the solar system, mechanics, dynamics, fluid
mechanics, probability, and the foundations of the calculus as well as number theory.
Lagrange died in Paris in April 1813.

This and other biographical material you will find in this book comes largely from the
the St. Andrews University History of Mathematics WWW page:

http://www-groups.dcs.st-andrews.ac.uk /~history/Mathematicians.



2.6. SPHERICAL AND CYLINDRICAL HARMONICS 49

Pierre-Simon Laplace really was French, having been born in Nor-
mandy in 1749. Laplace’s mathematical talents were recognized early
and he moved to Paris when he was 19 to further his studies. Laplace
presented his first paper to the Académie des Sciences in Paris when
he was 21 years old. He went on to make profound advances in differ-
ential equations and celestial mechanics. Laplace survived the

reign of terror and was one of the first professors at the new Ecole Normale in Paris.
Laplace propounded the nebular hypothesis for the origin of the solar system in his
Exposition du systeme du monde. He also advanced the radical proposal that there
could exist stars so massive that light could not escape them–we call these black holes
now! And Traité du Mécanique Céleste is still print and widely read. Laplace also
made fundamental contributions to mathematics, but I will mention only his book
Théorie Analytique des Probabilités. He died on the third of March 1827 in Paris.

When solving boundary value problems for differential equations like Laplace’s equation,
it is extremely handy if the boundary on which you want to specify the boundary con-
ditions can be represented by holding one of the coordinates constant. For instance, in
Cartesian coordinates the surface of the unit cube can be represented by:

z = ±1, for − 1 ≤ x ≤ 1 and − 1 ≤ y ≤ 1

y = ±1, for − 1 ≤ z ≤ 1 and − 1 ≤ x ≤ 1

x = ±1, for − 1 ≤ z ≤ 1 and − 1 ≤ y ≤ 1

On the other hand, if we tried to use Cartesian coordinates to solve a boundary value
problem on a spherical domain, we couldn’t represent this as a fixed value of any of the
coordinates. Obviously this would be much simpler if we used spherical coordinates, since
then we could specify boundary conditions on, for example, the surface r = constant.
The disadvantage to using coordinate systems other than Cartesian is that the differential
operators are more complicated. To derive an expression for the Laplacian in spherical
coordinates we have to change variables according to: x = r cosφ sin θ, y = r sinφ sin θ,
z = r cos θ. The angle θ runs from 0 to π, while the angle φ runs from 0 to 2π.

Here is the result, the Laplacian in spherical coordinates:

∇2ψ(x, y, z) =
1

r2

∂

∂r

(

r2∂ψ

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂ψ

∂θ

)

+
1

r2 sin2 θ

∂2ψ

∂φ2
(2.6.3)
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Physical interpretation of the Laplacian

In 1-dimension, Laplace’s equation says: φ′′(x) = 0. This equation can be integrated
to give: φ(x) = ax+b. So in 1-D any linear function (or a constant) satisfies Laplace’s
equation. The Laplacian operator itself measures (more or less) the curvature of a
function of space. So since Laplace’s equation says that this must be zero, it stands
to reason the harmonic functions would be relatively smooth.

2.6.1 separation of variables

Look for solutions of the form: ψ(r, θ, φ) = R(r)P (θ)Q(φ). So,

∇2ψ(r, θ, φ) =
1

r2

∂

∂r

(

r2∂ψ

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂ψ

∂θ

)

+
1

r2 sin2 θ

∂2ψ

∂φ2
(2.6.4)

=
PQ

r2

d

dr

(

r2dR

dr

)

+
RQ

r2 sin θ

d

dθ

(

sin θ
dP

dθ

)

+
RP

r2 sin2 θ

d2Q

dφ2
= 0.

Dividing, as usual, by RPQ we have:

1

Rr2

d

dr

(

r2dR

dr

)

+
1

Pr2 sin θ

d

dθ

(

sin θ
dP

dθ

)

+
1

Qr2 sin2 θ

d2Q

dφ2
= 0. (2.6.5)

This looks more complicated than what we had with rectangular coordinates. In fact it
looks like we’re stuck since all three terms involve both r and θ. However, multiplying
by r2 sin2 θ makes the third term just 1

Q
d2Q
dφ2 . So,

sin2 θ

R

d

dr

(

r2dR

dr

)

+
sin θ

P

d

dθ

(

sin θ
dP

dθ

)

= − 1

Q

d2Q

dφ2
. (2.6.6)

This we can make some progress with since we have a function of r and θ on the left side
and a function of φ on the right; therefore both sides must be equal to a constant, which
we’ll call m2. Thus

d2Q

dφ2
+m2Q = 0 (2.6.7)

and so Q must be proportional to eimφ. In order that the solution be continuous, we
must require that Q(φ) = Q(φ+ 2π) so m must be an integer. Of course, it may happen
that one is interested in solving a boundary on a subset of a sphere, in which case it may
not be true that Q is continuous; in that case m need not be an integer.

Next, for the r and θ part of Equation 2.6.6.

sin2 θ

R

d

dr

(

r2dR

dr

)

= −sin θ

P

d

dθ

(

sin θ
dP

dθ

)

+m2. (2.6.8)
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Again, to separate the r and θ we divide by sin2 θ:

1

R

d

dr

(

r2dR

dr

)

= − 1

P sin θ

d

dθ

(

sin θ
dP

dθ

)

+
m2

sin2 θ
. (2.6.9)

Now we can introduce another separation constant, call it k2. With this we get the radial
equation:

1

R

d

dr

(

r2dR

dr

)

= k2. (2.6.10)

This turns out to be easy to solve if we guess a trial solution of the form R = Arα.
Plugging this into the radial equation we get:

α(α+ 1)Arα − k2Arα = 0 (2.6.11)

which implies that k2 = α(α+ 1). Now if we were to write the separation constant k2 as
k2 = ℓ(ℓ+ 1), then it would be easy to see that

α(α+ 1) = ℓ(ℓ+ 1) (2.6.12)

is the same as

(α− ℓ)(α + (ℓ+ 1) = 0. (2.6.13)

This equation is satisfied for α = ℓ and α = −(ℓ + 1). In other words, the solution to

1

R

d

dr

(

r2dR

dr

)

= ℓ(ℓ+ 1) (2.6.14)

is

R(r) = Aℓr
ℓ +Bℓr

−(ℓ+1). (2.6.15)

Lastly, we must solve the θ equation for P (i.e., the right side of Equation 2.6.9 set equal
to ℓ(ℓ+ 1)):

1

sin θ

d

dθ

(

sin θ
dP

dθ

)

+

[

ℓ(ℓ+ 1) − m2

sin2 θ

]

P = 0. (2.6.16)

This is called Legendre’s equation and is sometimes written in terms of the variable
x = cos θ since then, 1

sin θ
d
dθ

= − d
dx

which leads to

d

dx

[

(1 − x2)
dP

dx

]

+

[

ℓ(ℓ+ 1) − m2

1 − x2

]

P. (2.6.17)

Remember that the angle θ runs from 0 to π, so the same interval in x corresponds to
[−1, 1].
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The solutions to Equations 2.6.16 or 2.6.17 are called associated Leg-

endre functions and are named after Adrien-Marie Legendre, one of
the towering figures of 18th and 19th century mathematics. Legendre
was born (Sept 1752) and died (Jan 1833) in Paris. He produced ma-
jor works on number theory, elliptic functions, geometry and celestial
mechanics.

The standard way to proceed with the solution of Legendre’s equation is by power series.
The solution P is expanded in a power series in x (or cos θ) of the form:

P (x) = (1 − x2)m/2
∞
∑

n=0

anx
n (2.6.18)

Since the solutions must be defined on the interval [−1, 1], we do not include any negative
powers of x. So, to find the coefficients an, we insert the power series into Equation 2.6.17
and derive a recursion relation. I will skip the details, which you can find in many applied
mathematics books, but the essential idea is that the power series solution diverges at the
end-points x = ±1 unless ℓ ≥ |m|. And in this case the power series actually terminates
and becomes a polynomial in x: the coefficients an are zero when n > ℓ − |m|. This
is why the solutions are called Legendre polynomials; they are written Pℓm(x), with ℓ
and m integers and ℓ ≥ |m|. Strictly speaking Pℓm(x) are called associated Legendre
polynomials. The term Legendre polynomial is reserved to the special case of m = 0.

The case of axial symmetry: m = 0

The separation constant m appears in both the φ (i.e., Q) and θ (i.e., P ) equations.
However, if m = 0 then Q(φ) is just a constant. So, for problems which are symmetrical
about the z axis (independent of φ) the θ equation reduces to

1

sin θ

d

dθ

(

sin θ
dP

dθ

)

+ ℓ(ℓ+ 1)P = 0 (2.6.19)

while the x equation reduces to

(1 − x2)
d2P

dx2
− 2x

dP

dx
+ ℓ(ℓ+ 1)P = 0. (2.6.20)

The solution depends on only one index now, ℓ, and is written Pl(x). By examining the
recursion relation for the coefficients of the power series one can derive the following two
formulae for the Legendre polynomials:
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Pℓ(x) =
1

2ℓℓ!

dℓ

dxℓ

(

x2 − 1
)ℓ
. (2.6.21)

Pℓm(x) = (−1)m(1 − x2)m/2 d
m

dxm
Pℓ(x). (2.6.22)

Of course Pm
ℓ reduces to Pℓ when m = 0. These expression for the Legendre polynomials

are referred to as Rodrigues’ formulae.2

So the separable solutions to Laplace’s equation involves multiplying the r solutions
by the θ solutions by the φ solutions:

ψ(r, θ, φ) =

{

rℓ

r−(ℓ+1)

}

Pℓm(cos θ)eimφ (2.6.23)

which reduces in the axi-symmetric case to

ψ(r, θ, φ) =

{

rℓ

r−(ℓ+1)

}

Pℓ(cos θ). (2.6.24)

This is the final result of separation of variables. You will have to take it on faith
for now that any solution of Laplace’s equation can be built up by superposition
out of these basic separation of variables solutions. In other words, any potential

function (solution to Laplace’s equation) can be written as:

ψ(r, θ, φ) =
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

(

Aℓmr
ℓ +Bℓmr

−(ℓ+1)
)

Yℓm(θ, φ). (2.6.25)

Shortly, when we solve boundary value problems for Laplace’s equation, all the work
will boil down to computing the A and B coefficients given the boundary values.

Here are the first few Legendre polynomials:

P1(x) = 1 (2.6.26)

P2(x) = x (2.6.27)

P3(x) =
1

2
(3x2 − 1) (2.6.28)

It is standard to put the θ and φ dependence of the solutions to Laplace’s equations to-
gether into a single set of functions called spherical harmonics.3 The spherical harmonics

2Rodriques was actually Benjamin Olinde, born in Bordeaux in 1794, the son of a wealthy Jewish

banker. Olinde studied mathematics at the Ecole Normale in Paris, taking his doctors degree in 1816

with a thesis containing the famous formulae for Legendre polynomials.
3A harmonic is any solution of Laplace’s equation.
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are defined as:

Yℓm(θ, φ) =

√

√

√

√

2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
Pℓm(θ, φ)eimφ. (2.6.29)

The first few spherical harmonics are:

Y00(θ, φ) =

√

1

4π
(2.6.30)

Y10(θ, φ) =

√

3

4π
cos θ (2.6.31)

Y1±1(θ, φ) = ∓
√

3

8π
sin θe±iφ (2.6.32)

Y20(θ, φ) =

√

5

16π
(2 cos2 θ − sin2 θ) (2.6.33)

Y2±1(θ, φ) = ∓
√

15

8π
cos θ sin θe±iφ (2.6.34)

Y2±2(θ, φ) =

√

15

32π
sin2 θe±2iφ (2.6.35)

2.6.2 Properties of Spherical Harmonics and Legendre

Polynomials

The Legendre polynomials and the spherical harmonics satisfy the following “orthogo-
nality” relations. We will see shortly that these properties are the analogs for functions
of the usual orthogonality relations you already know for vectors.

∫ −1

−1
Pℓ′(x)Pℓ(x)dx =

2

2ℓ+ 1
δℓℓ′ (2.6.36)

∫ −1

−1
Pℓ′m(x)Pℓm(x)dx =

2

2ℓ+ 1

(ℓ+m)!

(ℓ−m)!
δℓℓ′ (2.6.37)

∫

4π
Yℓm(θ, φ)Ȳℓ′m′(θ, φ)dΩ =

∫ 2π

0

∫ π

0
Yℓm(θ, φ)Ȳℓ′m′(θ, φ) sin θdθdφ = δℓℓ′δmm′ (2.6.38)
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where the over-bar denotes complex conjugation and Ω represents solid angle: dΩ ≡
sin θdθdφ. Using 4π as the limit of integration is symbolic of the fact that if you integrate
dΩ over the sphere (θ going from 0 to π and φ going from 0 to 2π) you get 4π. Notice
that the second relation is slightly different than the others; it says that for any given
value of m, the polynomials Pℓm and Pℓ′m are orthogonal.

There is also the following “parity” property:

Yℓm(π − θ, φ+ π) = (−1)ℓYℓm(θ, φ). (2.6.39)

orthogonal function expansions

The functions Pℓ(x) have a very special property. They are complete in the set of func-
tions on [−1, 1]. This means that any (reasonable) function defined on [−1, 1] can be
represented as a superposition of the Legendre polynomials:

f(x) =
∞
∑

ℓ=0

AℓPℓ(x). (2.6.40)

To compute the coefficients of this expansion we use the orthogonality relation exactly
as you would with an ordinary vector. For example, suppose you want to know the x−
component of a vector T. All you have to do is take the inner product of T with x̂. This
is because

T = Txx̂ + Tyŷ + Tzẑ

so
x̂ · T = Txx̂ · x̂ + Tyx̂ · ŷ + Tzx̂ · ẑ = Tx

since x̂ · ẑ = x̂ · ŷ = 0 and x̂ · x̂ = 1. When you take the inner product of two vectors
you sum the product of their components. The analog of this for functions is to sum the
product of the values of the function at each point in their domains. Since the variables
are continuous, we use an integration instead of a summation. So the “dot” or inner
product of two functions f(x) and g(x) defined on [−1, 1] is:

(f, g) =
∫ 1

−1
f(x)g(x)dx. (2.6.41)

So, to find the expansion coefficients of a function f(x) we take the inner product of f
with each of the Legendre “basis vectors” Pℓ(x):

∫ 1

−1
f(x)Pℓ′(x)dx =

∞
∑

ℓ=0

Aℓ

∫ 1

−1
Pℓ(x)Pℓ′(x)dx =

∞
∑

ℓ=0

Aℓ
2

2ℓ+ 1
δℓℓ′ =

2Aℓ′

2ℓ′ + 1
. (2.6.42)

So, the ℓ-th coefficient of the expansion of a function f(x) is

Aℓ =
2ℓ+ 1

2

∫ 1

−1
f(x)Pℓ(x)dx (2.6.43)
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Similarly, we can expand any function defined on the surface of the unit sphere in terms
of the Yℓm(θ, φ):

ψ(θ, φ) =
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

AℓmYℓm(θ, φ) (2.6.44)

with expansion coefficients

Aℓm =
∫

4π
ψ(θ, φ)Ȳℓm(θ, φ)dΩ. (2.6.45)

For example, what is the expansion in spherical harmonics of 1? Only the ℓ = 0, m = 0
spherical harmonic is constant, so

1 =
√

4πY00.

In other words, Aℓm =
√

4πδ0,0.

What is a field?

The term “field” is used to refer to any function of space. This could be a scalar
function or it could be a vector or even tensor function. Examples of scalar fields
include: temperature, acoustic pressure and mass density. Examples of vector fields
include the electric and magnetic fields, gravity, elastic displacement. Examples of
tensor fields include the stress and strain inside continuous bodies.

2.7 Exercises

1. Apply separation of variables to Laplace’s equation in cylindrical coordinates:

∇2ψ(r, θ, z) =
1

r

∂

∂r

(

r
∂ψ

∂r

)

+
1

r2

∂2ψ

∂θ2
+
∂2ψ

∂z2
= 0.

answer: We make the, by now, standard assumption that we can write the solution
in the form ψ(r, θ, z) = R(r)Q(θ)Z(z). Plugging this into Laplace’s equation and
dividing by RQZ we have:

1

Rr

d

dr

(

r
dR

dr

)

+
1

r2Q

d2Q

dθ2
+

1

Z

d2Z

dz2
. (2.7.1)

At this point we have a choice as to the order of the solution. We could first isolate
the z equation or we could isolate the θ equation. Also, in choosing the sign of the
separation constant, we are in effect choosing whether we want an exponentially
decaying solution or a sinusoidal one. I suggest isolating the θ equation first since
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we almost always want our solutions to be continuous in angle. That means we
expect the fundamental θ dependence to be sinusoidal, so we write

r

R

d

dr

(

r
dR

dr

)

+
r2

Z

d2Z

dz2
= − 1

Q

d2Q

dθ2
= m2. (2.7.2)

This gives us
d2Q

dθ2
+m2Q = 0 (2.7.3)

which has solutions proportional to e±imθ. Now if we had chosen the separation
constant to be −m2, then we would have gotten

d2Q

dθ2
−m2Q = 0 (2.7.4)

the solutions of which are proportional to e±mθ. Since we usually don’t expect
exponential decay with angle, we choose the plus sign for the separation constant.
As we will see shortly, the choice is less clear cut for the other variables. In any
case we now have for the r, θ dependence:

r

R

d

dr

(

r
dR

dr

)

−m2 =
r2

Z

d2Z

dz2
(2.7.5)

or
1

Rr

d

dr

(

r
dR

dr

)

− m2

r2
= − 1

Z

d2Z

dz2
. (2.7.6)

Once again we must decide on the sign of the separation constant. Looking at the z
equation we could imaging either sinusoidal or exponential dependence. So let’s do
both cases. First let’s look for exponential z dependence. That means we’ll need a
negative separation constant, say, −k2:

1

Rr

d

dr

(

r
dR

dr

)

− m2

r2
= − 1

Z

d2Z

dz2
= −k2, (2.7.7)

which implies
r

R

d

dr

(

r
dR

dr

)

+ r2k2 −m2 = 0 (2.7.8)

and
d2Z

dz2
− k2Z = 0. (2.7.9)

The Z solutions are now proportional to e±iz.

Now for the R solutions. These satisfy

r
d

dr

(

r
dR

dr

)

+
(

r2k2 −m2
)

R = 0



58 CHAPTER 2. WAVES AND MODES IN ONE AND TWO SPATIAL DIMENSIONS

2
J

1
J

J0

5 10 15 20

-0.4

-0.2

0.2

0.4

0.6

0.8

1

Figure 2.8: The first 3 cylindrical Bessel functions.

The constant k arose from z−separation, so if we set k = 0 this corresponds to no
z−dependence. This is useful, for example, in studying the potentials of long wires,
where we can neglect the z-dependence. It is easy to show, similarly to what we
did with the axi-symmetric spherical harmonics, that in the case k = 0, the radial
solutions are of the form rm and r−m (for m > 0). To see this just make a trial
solution of the form R(r) = Arα, then show that this satisfies the radial equation
if and only if α2 = m2.

The radial equation above is almost in the standard form of Bessel’s equation.

Friedrich Wilhelm Bessel (born 22 July 1784 in Minden, Westphalia,
died 17 March 1846 in Konigsberg, Prussia) was a leading figure in
19th century astronomy. Bessel made fundamental advances in the
calculation of planetary orbits and is also well-known for his work as
a teacher and educational reformer.

To get it in the standard form we make the substitution: u = kr, then

1

u

d

du

(

u
dR

du

)

+

(

1 − m2

u2

)

R = 0 (2.7.10)

or after multiplication by u2:

u2d
2R

du2
+ u

dR

du
+
(

u2 −m2
)

R = 0 (2.7.11)

Solutions of this last equation are called cylindrical Bessel functions and are denoted
by Jm(u).

The power series solution to Bessel’s equation can be found in many textbooks on
differential equations and electricity and magnetism such as [5]. Here I will just
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quote the result:

Jm(u) =
um

2mm!

∞
∑

ℓ=0

(−1)ℓ

22ℓℓ!(m+ 1)(m + 2) · · · (m+ ℓ)
u2ℓ (2.7.12)

This is hard to deal with analytically. However for small and large values of u = kr,
there are nice analytic approximations:

Jm(kr) ≈ 1

(m + 1)!

(

kr

2

)m

kr << 1 (2.7.13)

and

Jm(kr) ≈
√

2

πkr
cos

(

kr − mπ

2
− π

4

)

kr >> 1 (2.7.14)

sinusoidal z-dependence and modified Bessel functions

On the other hand, if instead of choosing the separation constant to be −k2 we had
chosen k2, then

1

Rr

d

dr

(

r
dR

dr

)

− m2

r2
= − 1

Z

d2Z

dz2
= k2, (2.7.15)

and we would have gotten Z solutions proportional to e±ikz and the radial equation
would have been:

r
d

dr

(

r
dR

dr

)

− (k2r2 +m2)R = 0 (2.7.16)

or equivalently

r2d
2R

dr2
+ r

dR

dr
− (k2r2 +m2)R = 0. (2.7.17)

The solutions of this equation are called modified Bessel functions (of the first
kind).

2. Expand f(x) = e−|x| on [−1, 1] in terms of ℓ = 0, 1, 2 Legendre polynomials.

answer: A0 = 1 − 1
e
. A1 = 0. A2 = 25

2
− 35

e
.

3. A grounded conducting sphere of radius a is placed in a plane parallel electric field
E = E0ẑ. What is the electric field outside the conductor?

answer: First we will compute the potential V (r, θ, φ) then we will take the gra-
dient of this to get the electric field. Since the electric field is axisymmetric about
the z−axis, in fact the potential does not depend on φ. So we can be sure that we
can write the unknown potential as:

V (r, θ) =
∞
∑

ℓ=0

(

Aℓr
ℓ +Bℓr

−(ℓ+1)
)

Pl(cos θ).
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We have two boundary conditions that we can apply. First the potential on the
surface is zero, so

V (r = a, θ) =
∞
∑

ℓ=0

(

Aℓa
ℓ +Bℓa

−(ℓ+1)
)

Pl(cos θ) = 0.

The second boundary condition is that as r → ∞, the potential must approach
that of the original, unperturbed E-field:

lim
r→∞

V (r, θ) = −E0z

where E = −∇(−E0z). If we apply the orthogonality condition to the r = a
boundary condition, we can see that

0 =
∞
∑

ℓ=0

(

Aℓa
ℓ +Bℓa

−(ℓ+1)
)

∫ 1

−1
Pl(x)Pℓ′(x)dx

=
∞
∑

ℓ=0

(

Aℓa
ℓ +Bℓa

−(ℓ+1)
) 2

2ℓ+ 1
δℓℓ′

= Aℓa
ℓ +Bℓa

−(ℓ+1). (2.7.18)

So we end up with the constraint that: Bℓ = −a2ℓ+1Aℓ.

Next we apply the large-r condition. In the limit of large r, our boundary condition
only constrains terms involving positive power of r, since the negative powers of r
go to zero. So we must have

lim
r→∞

−E0r cos θ ≡ lim
r→∞

−E0rP1(cos θ) =
∞
∑

ℓ=0

Aℓr
ℓPℓ(cos θ).

It is clear from this that we can satisfy the boundary condition at infinity only if
all the of A coefficients are zero expect the ℓ = 1 term. So Aℓ = 0 for all ℓ except
1, and A1 = −E0. We combine this with the constraint we found on the A and B
coefficients above to get: B1 = −A1a

3 = E0a
3. With the result that the potential

everywhere outside the sphere is:

V (r, θ) = −E0r cos θ + E0a
3 cos θ

r2
= −E0

(

1 −
(

a

r

)3
)

r cos θ.

From this it follows by taking the gradient in spherical coordinates that:

Er = E0

(

1 + 2
(

a

r

)3
)

cos θ

and

Eθ = −E0

(

1 −
(

a

r

)3
)

sin θ.
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4. A grounded, spherical conductor of radius a is placed in an electric field such that
far away from the sphere the potential is V (r, θ, φ) = r2 sin 2θ cosφ. Find the
potential everywhere outside the sphere.

answer: We can write any solution of Laplace’s equation as:

ψ(r, θ, φ) =
∑

ℓ,m

(

Aℓmr
ℓ +Bℓmr

−(ℓ+1)
)

Yℓm(θ, φ). (2.7.19)

In this case we are told that far away from the conductor the potential is: r2 sin 2θ cos φ.
OK, for large r we can only say something about the A coefficients since the terms
involving the B coefficients decay at least as fast as 1/r. Of the A coefficients it
is clear that since the field must be proportional to r2 for large r, only the ℓ = 2
terms can be nonzero. So straight away we can see that for large r the field must
be of the form

ψ(r → ∞, θ, φ) = r2 (A22Y22 +A21Y21 +A20Y20 +A2−1Y2−1 +A2−1Y2−2) .
(2.7.20)

If you look at the ℓ = 2 spherical harmonics you will see that only the m = 1 terms
are needed:

Y21 = −
√

15

8π
sin θ cos θeiφ

and

Y2−1 =

√

15

8π
sin θ cos θe−iφ

so
√

8π

15
(Y2−1 − Y21) = 2 sin θ cos θ cosφ.

In fact, since sin 2θ = 2 sin θ cos θ, it follows that:

r2 sin 2θ cosφ =

√

8π

15
r2 (−Y21 + Y2−1) . (2.7.21)

Therefore Y21 = −A2−1 = −
√

8π
15
.

Now just as we did in the previous problem, we can apply the boundary condition
that ψ(r = a, θ, φ) = 0 to give a constraint on the A and B coefficients:

Bℓm = −a2ℓ+1Aℓm. (2.7.22)

Hence only B21 = a5
√

8π
15

and B2−1 = −a5
√

8π
15

are nonzero. So now we have all
four nonzero coefficients in the spherical harmonic expansion of ψ:
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ψ(r, θ, φ) =

√

8π

15

[(

−r2 +
a5

r3

)

Y21 +

(

r2 − a5

r3

)

Y2−1

]

=

√

8π

15

(

r2 − a5

r3

)

(−Y21 + Y2−1) (2.7.23)

=

(

1 −
(

a

r

)5
)

r2 sin 2θ cosφ. (2.7.24)

Notice that this agrees with the boundary condition when r = a. Always check
your results against what you know.

5. Suppose the potential is constant on a sphere of radius a: ψ(r = a, θ, φ) = V0.
Use the spherical harmonic expansion of Laplace’s equation to find the potential
everywhere on the exterior of the sphere.

answer: On the surface of the sphere, the potential is a constant. Only the
ℓ = m = 0 spherical harmonic is constant so

ψ(r = a, θ, φ) = V0 = V0

√
4πY00. (2.7.25)

This means that only the ℓ = m = 0 term in the expansion of the field is present.
This tells us immediately that

ψ(r, θ, φ) =
(

A00 +B00r
−1
)

Y00. (2.7.26)

Usually we don’t care about constant potentials since they don’t contribute to the
electric or gravitational fields (the gradient of a constant is zero). So we can always
shift the potential by a constant amount without changing physics; this means that
we can ignore the A00 term. At r = a we have:

ψ(r = 0, θ, φ) = B00a
−1Y00 = V0

√
4πY00, (2.7.27)

so B00 = V0a
−1
√

4π and the complete potential outside the sphere is

ψ(r, θ, φ) =
(

V0a
√

4π
)

r−1Y00 =
aV0

r
. (2.7.28)

6. Consider the gravitational potential on the Earth’s surface. The Earth is not exactly
a sphere. A better approximation is:

ψ(r = R, θ, φ) = V0 (1 − J2P2(cos θ))

where J2 and V0 are constants. This is a bit of a trick actually since we’re still
assuming the surface is a sphere. What is the potential for r > R?
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answer: On the surface r = R the potential depends only on θ, so

ψ(r = R, θ) = V0 (1 − J2P2(cos θ)) . (2.7.29)

Since this problem is axi-symmetric (no φ-dependence), the complete solution of
Laplace’s equation is

ψ(r, θ) =
∞
∑

ℓ=0

(

Aℓr
ℓ +Bℓr

−(ℓ+1)
)

Pℓ(cos θ). (2.7.30)

Applying the boundary condition we have

V0 (1 − J2P2(cos θ)) =
∞
∑

ℓ=0

(

AℓR
ℓ +BℓR

−(ℓ+1)
)

Pℓ(cos θ). (2.7.31)

Using the orthogonality of the Legendre polynomials this equation implies two
constraints on the A and B coefficients:

V0 = A0 +B0R
−1

and
−J2V0 =

(

A2R
2 +B2R

−3
)

.

The gravitational potential of the Earth cannot grow as you go farther away from
the surface, so the A2 term must be zero. And as before we can set any constant
potential term to zero. So we’re left with: B0 = RV0 and B2 = −J2V0R

3. Which
gives for the final solution:

ψ(r, θ, φ) =
V0R

r

[

1 − J2

(

R

r

)2

P2(cos θ)

]

. (2.7.32)

The term J2 corresponds to the flattening of the Earth. If this term is zero, we’re
left with the usual 1/r potential which equals V0 on the surface. In any case, the
effects of the J2 term decay like 1/r2 as you recede from the Earth’s surface.

7. Consider two concentric, conducting spheres of radius r0 and r1 respectively. The
inner sphere is grounded while the outer sphere is held at a fixed potential V0.
Find the potential between the spheres by directly integrating Laplace’s equation
in spherical coordinates. Hint: this problem is spherically symmetric.

answer: The spherical symmetry implies that the solution depends only on r.
Therefore Laplace’s equation reduces to

∇2φ(r) =
1

r2

∂

∂r

(

r2∂φ

∂r

)

= 0.

This implies that r2 ∂φ
∂r

is a constant; call it c. Integrating once more we have

φ(r) = d− c

r
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where r is the second integration constant. Applying the two boundary conditions
we can see that c = V0(r1r0)

r1−r0

and d = c
r
. The final result is that

φ(r) = V0
r1
r

r − r0
r1 − r0

= V0

[

1 − r0

r

1 − r0

r1

]

.

8. Two functions f(x) and g(x) defined on an interval [−1, 1] are said to be orthogonal
on that interval if (f, g) ≡ ∫ 1

−1 f(x)g(x)dx = 0. Similarly we can define the squared
“length” of a function on the interval by: (f, f) =

∫ 1
−1 f

2(x)dx. Here are two

functions (polynomials of zeroth and first order) Q0(x) =
√

1
2

and Q1(x) =
√

3
2
x,

that are orthogonal and have unit length. Compute the unique quadratic function
Q2(x) by using the three conditions:

(Q0, Q2) = 0

(Q1, Q2) = 0

(Q2, Q2) = 1

answer: Since Q2 is a quadratic, it can be written Q2(x) = ax2 + bx + c. The
conditions (Q0, Q2) = 0 and (Q1, Q2) = 0 force b = 0 and c = −1/3a. The

normalization condition (Q2, Q2) gives c = 3
2

√

5
2
. So,

Q2(x) =
3

2

√

5

2

(

x2 − 1

3

)

.

9. • Give the spherical harmonic expansion of sin θ cosφ.

• If this is the potential on a conducting sphere of radius 1, what is the potential
for r > 1?.

answer: In the absence of any other fields, for solutions on the exterior of bodies
we want potentials that decay with r. So the general solution must be of the form

ψ(r, θ, φ) =
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

Aℓmr
−(ℓ+1)Yℓm(θ, φ)

The boundary condition is:

ψ(r = 1, θ, φ) =
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

AℓmYℓm(θ, φ) = sin θ cosφ.

But the right-hand side is

sin θ cosφ =
1

2

√

8π

3
(Y11 − Y1−1) .
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So clearly only the ℓ = 1 A−coefficients are nonzero: A11 = −A1−1 = 1
2

√

8π
3

. Hence,
the potential outside the sphere is

ψ(r, θ, φ) =
1

2

√

8π

3
r−2 (Y11 − Y1−1) =

sin θ cos φ

r2
.

10. The 2D Laplace’s equation in Cartesian coordinates is:

∇2ψ(x, y) =
∂2ψ

∂x2
+
∂2ψ

∂y2
= 0.

Apply separation of variables to this equation to get two ordinary differential equa-
tions. Solve these equations. Explain how the choice of sign of the separation
constant influences the solutions.

answer: By the now standard argument, we look for solutions of the formX(x)Y (y),
in which case Laplace’s equation reduces to:

X ′′

X
= −Y

′′

Y
.

So we can choose the separation constant to be either k2 or −k2. If we choose the
plus sign, then the solution will be oscillatory in the y direction and exponential in
the x direction. If we choose the negative sign, the solution will be oscillatory in
the x direction and exponential in the y direction. E.g., with the positive sign we
get

X ′′ − k2X = 0

and

Y ′′ + k2Y = −0.

So the basic solutions are of the form

ψ(x, y) =
∑

k

eikxe−ky

or

ψ(x, y) =
∑

k

e−kxeiky

2.8 More on vectors

In the next chapter we will study vectors systematically, but you already know quite a
lot about them. You were taught that a vector is something that has both a magnitude
(length) and direction. Examples include gravity and the electric field. You also know
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that any vector can be resolved into components. For example a vector T in three
dimensions can be resolved as

T = Txx̂ + Tyŷ + Tzẑ (2.8.1)

We will refer to the set of all three dimensional vectors like this as R3 since it’s really
the real line R1 in each of the three dimensions. The x− y plane is R2.

To find the components of the vector in the various directions we “dot” the basis vectors
(i.e., x̂, ŷ and ẑ) into T. For example

x̂ ·T = Txx̂ · x̂ + Tyx̂ · ŷ + Tzx̂ · ẑ. (2.8.2)

But since the basis vectors are mutually perpendicular (orthogonal) x̂ · ŷ = x̂ · ẑ = 0 and
x̂ · x̂ = 1. So Tx = x̂ · T and similarly for the other components.

You can see that what really counts are the components of the vector in the mutually
orthogonal directions. It doesn’t really matter what we call these directions so we could
also write

T = Txx̂ + Tyŷ + Tzẑ = T1ê1 + T2ê2 + T3ê3 =
3
∑

i=1

Tiêi (2.8.3)

The advantage of labeling the directions by numbers is that it frees us from the constraints
of ordinary three-dimensional geometry. Consider a time-series. Suppose I record the
noon temperature for three days. Here are the data: (15.3, 8.5, 11.0). I can pretend that
these are three components of a vector in R3. The fact is there is no physical “daily
temperature vector” but I can treat these three numbers as if they were components
of a three-dimensional vector. Or they could be the first three samples of a seismic
trace. And if three, why not four? Or five? It turns out that a set of numbers such
as (15.3, 8.5, 11.0, 12.1, 14.3) has exactly the same sort geometrical properties in R5 as
(15.3, 8.5, 11.0) does in R3, it’s just that I can’t make a plot of this vector on a piece of
paper. I could extend this approach to quite long vectors, such as all the samples in a
typical seismic trace, which might number in the thousands. Suppose that

A = (a1, a2, a3...a1000)

is a one thousand sample seismic trace and

B = (b1, b2, b3...b1000)

is another. Anything you can do with a three-dimensional vector you can do with a
thousand-dimensional vector such as A and B, except plot them. We can add two
seismic traces component-wise just as you would add two force vectors:

A + B =
1000
∑

i=1

Ai +Bi.
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We can take take the length of a seismic trace:

‖A‖2 =
1000
∑

i=1

A2
i ,

which is just the Pythagorean theorem in a 1000-dimensional space.

We can even compute the “angle” between two traces: since A · B = ‖A‖ ‖B‖ cos θ
works for ordinary vectors, there is no reason we cannot extend the idea to these abstract
vectors. Then, the angle between the two traces is naturally:

cos θ =
A · B

‖A‖ ‖B‖

=

∑1000
i=1 AiBi

∑1000
i=1 A

2
i

∑1000
i=1 B

2
i

Don’t be put off by this apparently abstract notion. The point is we can manipulate
things like seismic traces as vectors and gain tremendous advantage from our prior geo-
metrical understanding in R3, even though we’re not in R3 any more. And for the final
stroke, you should not be surprised if I tell you that we need not limit ourselves to vectors
of finite length. Consider for example a power series:

f(x) =
∞
∑

i=0

aix
i.

Think of the powers of x here as being like our basis vectors êi in R3. Then the coefficients
ai are just like the coefficients Ai of our length-1000 time series above; there just happens
to be an infinite number of them! Well, OK, here we do run into a minor spot of difficulty.
For a finite length series

∑N
i=0 aix

i we don’t have to worry about convergence, but for
infinite series like

∑∞
i=0 aix

i, we do. Apart from that, we can still use our geometrical
intuition even in spaces of infinite dimension.

Look again at the dot or inner product of two finite length vectors:

A · B =
1000
∑

i=1

AiBi

exactly as in R3. We can certainly use the same formula for the dot product of two
infinite dimensional vectors:

A · B =
∞
∑

i=1

AiBi

provided the sum converges. The dot product for functions is just like this except that
we can’t use a summation, we must use an integration:

f(x) · g(x) =
∫

f(x)g(x)dx
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where the integration is over whatever interval the functions are defined. It would be
unconventional to use the “dot” for the inner product of functions, although we could.
The standard notation for the dot product of functions is (f, g), thus

(f, g) ≡
∫

f(x)g(x)dx.

So, when we said a few pages ago that

∫ 1

−1
Pℓ′(x)Pℓ(x)dx =

2

2ℓ+ 1
δℓℓ′

this means that the dot product of any Pℓ with any other is zero. So, (P0, P1) = 0 and
(P1, P23) = 0. It really does make sense to visualize P0, P1 and so on, as orthogonal
vectors in some infinite dimensional space. There is nothing super-complicated about
this idea; it really is quite natural when you get used to it. And not only does it save
you a lot of time in the long run, it also allows you to apply your geometrical insight to
solve problems that would be very difficult otherwise to solve.

One last thing. If I say that

axx̂ + ayŷ + azẑ = bxx̂ + byŷ + bzẑ

it will come as no surprise to you that this implies that the coefficients of each basis
vector must be equal ax = bx, ay = by, and az = bz. This is easy to prove just by dotting
the above equation with each basis vector in succession. But now suppose I say that

a0 + a1x = b0 + b1x?

Does this imply that a0 = b0 and a1 = b1? Yes and for exactly the same reason. The
basis vectors are 1 = P0 and x = P1 are mutually orthogonal (at least on [−1, 1])

∫ 1

−1
1 · xdx = 0.

Another way to see this is to re-arrange the equation a0 + a1x+ = b0 + b1x as:

(a0 − b0) = (b1 − a1)x.

But x is completely arbitrary here, so the only way this equation can possibly be true
for all x is if it really says 0 = 0x, or a0 = b0, and a1 = b1.

This orthogonality of the basis vectors is why we could say in the HW problem on
rotational elipticity of the Earth that an equation such as

V0 (1 − J2P2(cos θ)) =
∞
∑

ℓ=0

(

AℓR
ℓ +BℓR

−(ℓ+1)
)

Pℓ(cos θ). (2.8.4)
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forces us to conclude that
V0 = A0 +B0R

−1

and
−J2V0 =

(

A2R
2 +B2R

−3
)

.

The first equation comes from equating terms proportional P0 (which equals 1) on both
sides of equation 2.8.4 and the second comes from equating terms proportional to P2. All
the other Pℓ terms are zero on the left side of equation 2.8.4 so they must be zero on the
right.


