
[EOC, Wed. 3/8/2006, #25]

The pressure can also be characterized by the slope of the tangent line:

P = −Ud(Vi)− Uβ(Vf )
Vi − Vf

. (62)

This can be rearranged with final and initial quantities on opposite sides,
yielding

Uβ(Vf ) + PVf = Ud(Vi) + PVi , (63)

which is just the equality of the enthalpies of the two phases at the endpoints
of the transition:

Hβ(Vf ) = Hd(Vi) . (64)

This is the condition for the coexistence of the two phases when the tem-
perature and entropy play no role. That is the case here, where the energy
vs volume curves were generated via calculations for T = 0.

More commonly, both pressure and temperature changes are considered,
so that the Givvs free energy plays a key role.

HW Problem. Schroeder problem 5.29, p. 172.

Also, in such cases, it si useful to map out the boundaries between the
different phases in a phase diagram in the temperature-pressure plane. A
convenient example is water, both because it is familiar and because it
exhibits common general features. At low pressures, the phase diagram of
water looks roughly like this:

point

solid

liquid

point
gas

critical

triple

P

T

The temperatures and pressures of the triple point and critical point are

Tt = 0.0098◦C Tc = 374◦C
Pt = 6.12 mbar Pc = 220.6 bar .

(65)

Some of the features of this phase diagram (taken to be typical) are:

• When a coexistence curve is encountered at fixed pressure, the tem-
perature stops changing, while heat is added or removed. Generally,
the volume changes during the transition. An analogous statement
applies when a coexistence curve is encountered at given temperature.
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• At a triple point, three phases coexist. Its pressure and temperature
are unique, so it can serve as a standard.

• Beyond the critical point, the distinction between liquid and gas is
lost. For temperatures above Tc or pressures above Pc, it’s just a
generic fluid. Near (within a fraction of a degree) the critical point,
the fluid exhibits critical opalescence. It becomes milky white and
opaque, scattering light strongly. The reason is that the uniformity
that is generally characteristic of macroscopic equilibrium states dis-
appears near the critical point. The fluid exhibits large, macroscopic
fluctuations in density, which scatter light, leading to the milky ap-
pearance.

• The existence of and endpoint on the liquid-gas coexistence curve
implies that it is possible to transform between the liquid and gas
phases continuously:

solid

gas

liquid

P

T

Reading assignment. Schroeder, section 6.1.

[EOC, Fri. 3/10/2006, #26]

At high pressures, above about one or two kilobars, water exhibits a
number of additional solid phases having crystal structures different from
that of familiar ice. Recall our discussion of silicon for a general idea of
how solid-solid phase transitions can occur.

0.1.7 Phase coexistence curves

Consider a system containing two coexisting phases of a single substance,
such as gas and liquid:

Gas

Liquid
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The two phases can be treated as subsystems in thermal, mechanical, and
diffusive contact—they can exchange energy, volume, and particles. We’ve
already seen that the conditions for equilibrium in such a case are:

Tg = Tl , Pg = Pl , and µg = µl . (66)

If any of those don’t hold initially, then exahcnges of the corresponding
quantities will be biased in one direction until the equalities are established.
These conditions are satisfied at all points on the coesistence curves, though
the values of the temperature, pressure, and chemical potential vary from
point to point on the curves.

Now consider two nearby points on the liquid-gas phase coesistence
curve

solid

gas

liquid

P

T

µg

µ′l
µ′gµl

On each side of the curve at each of the two points, we consider a state
consisting entirely of liquid or entirely of gas. At each of the two points the
pressures and temperatures of the gas and the liquid are equal, and so are
the chemical potentials:

µl = µg and µ′l = µ′g . (67)

Thus, the differences between the chemical potentials at the two points
must be equal in the two phases:

µ′l − µl = µ′g − µg . (68)

In the limit as the separation between the points goes to zero, the differences
become infinitesimal:

dµl = dµg . (69)

We showed recently that the chemical potential and the Gibbs free en-
ergy are closely related in a one-component system:

G = µN . (70)

So the equality of the changes in the chemical potentials on the two sides
of the curve implies equality of the changes in the Gibbs free energies:

dGl = dGg . (71)

But we know that the total differential of G is

dG = −S dT + V dP + µdN , (72)
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so the equality of dGl and dGg implies that

− Sl dT + Vl dP = −Sg dT + Vg dP , (73)

with dN = 0, since N is fixed. This can be rearranged to find the slope of
the coesixtence curve:

dP

dT
=

Sg − Sl

Vg − Vl
. (74)

Now the entropy change is closely related to the heat transfer needed
to accomplish the phase transformation:

Q = T ∆S = L , (75)

where L is the latent heat. Since we’re treating Q and S as extensive
quantities, L must represent one as well. Thus, L is the latent heat for the
entire sample. We can use the latent heat to write the slope of the phase
coexistence curve as:

dP

dT
=

L

T (Vg − Vl)
=

L

T ∆V
, (76)

which is known as the Clausius-Clapeyron equation.

HW Problem. Schroeder problem 5.45, pp. 177, 178.

HW Problem. Schroeder problem 5.47, p. 179.

20



Chapter 1

Boltzmann Statistics

Reading assignment. Schroeder, section 6.2.

Our work on statistical mechanics has been focused principally on the
understanding of the underlying probabilistic reason for macroscopic equi-
librium of isolated systems and the justification that provides for the con-
cepts and methods of thermodynamics. We have found that the statistical
approach can easily be applied to a few simple systems to determine the
entropy, from which we can obtain all the other important macroscopic
properties of those systems.

We extended the thermodynamic formalism built upon that foundation
by considering systems in contact with reservoirs that determine the equi-
librium values of one or more of the intrinsic variables of the system, such
as the temperature, pressure, or chemical potential. That extension was
based upon the foundation established by our understanding of the central
importance of probability, and therefore entropy, in determining the equi-
librium state of a composite system consisting of the system of interest and
the reservoir(s) to which is connected. The result was a collection of new
formalisms based on appropriate thermodynamic potentials, each of which
is obtained from the energy (or the entropy) of the system by Legendre
transformation. Each of the potentials provides a basis for analyzing the
thermodynamic behavior of a system with one or more of its intrinsic vari-
ables externally controlled. Derivatives of the potentials, like those of the
entropy and the energy, are closely related to important thermodynamic
quantities and/or materials properties, and the conditions for equilibrium
of the system take the form of variational principles involving the potentials.

What is still missing in this picture is the appropriate statistical me-
chanical treatment of systems in contact with reservoirs. As we saw with
the thermodynamics, a formalism directly targeted to the relevant type of
reservoir contact helps to make the analysis simpler, avoiding the need to
treat the reservoir itself as part of the system. The same is true in statistical
mechanics, and our next goal is to begin to fill in the missing pieces of that
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portion of thermal physics. We will find that the emerging formalism has
tremendous power, enabling a substantial increase in the range of systems
we can analyze.

Before embarking on that task, let’s summarize in tabular form the es-
sentials of the statistical and thermodynamic formalisms we have developed
so far. This will make clear which pieces are still missing and suggest the
relationships we can expect them to have with their thermodynamic kin.

Type of State Massieu Thermodynamic
contact weight Norm. function potential

Isolated 1 Ω S(U, V,N) = k lnΩ U(S, V,N)

Thermal S − 1
T U F = U − TS

Mechanical S − P
T V H = U + PV

Therm. & Mech. S − 1
T U − P

T V G = U − TS + PV

Diffusive S + µ
T N U − µN

Therm. & Diff. S − 1
T U + µ

T N Φ = U − TS − µN

The second and third columns are the basic ingredients of the statistical
mechanics of the system, as the ratio of the weight in the second column to
normalization constant in the third gives the probability of the state. For
an isolated system, the states referred to are its accessible microstates, and
the normalization constant Ω is the sum of the weights of all the states,
which is simply the number of microstates, since they are all assumed to
have equal weight. That is, Ω is the multiplicity of the macrostate with
energy U . I’ve included in the thermodynamic columns, the fourth and
fifth, both the Massieu functions, most of which we haven’t used, and the
corresponding thermodynamic potentials, most of which should be familiar
by now. Clearly, we are missing the appropriate weights and normalization
constants for the probability distributions of the states of systems in contact
with reservoirs, and we will remedy that for the case of thermal contact in
this chapter.

1.1 The Boltzmann factor

As we know, when a system is placed in thermal contact with a reservoir,
exchanges of energy will be biased in such a way as to bring the temperature
of the system into equality with that of the reservoir. Just as we developed a
thermodynamic formalism for such a system that refers only to the variables
of the system itself, we would like to develop a statistical formalism that
refers only to the microstates of the system, ignoring those of the reservoir.
It is only the temperature of the reservoir, its tendency to act as a source
or sink of energy when in contact with a system, that should influence
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the probabilities of the states of the system. Specifically, we expect that
raising the temperature of the reservoir will increase the probabilities of
higher-energy states of the system at the expense of lower-energy states.

To determine the probability distribution of the microstates of a system
in thermal contact with a reservoir, we can make use of a strategy similar
to the one we used to discover that the free energy F = U −TS determines
the thermodynamics of such a system through the minimization of F in
equilibrium. That is, we treat the combined system plus reservoir as an
isolated system and apply the entropy-based formalism to the combined
system.

Let’s first think about the way in which the reservoir influences the
probabilities of the states of the system. We’ve seen already that the overall
multiplicity as a function of the division of energy between two macroscopic
systems in thermal contact is strongly peaked at the point where the total
entropy is maximized. We looked at a small-scale example of this long ago,
when we examined Schroeder’s Figure 3.1 (p. 87):

50

qA

SA

SB

Stotal

E
n
tr

o
p
y

(u
n
it
s

o
f
k
)

qB

20 40 60 80 100

80 60 40 20 0

100

150

200

250

300

0

The situation depicted is the thermal contact between two Einstein crys-
tals, system A having 300 oscillators and system B having 200 oscillators.
The difference is small in this case, and the systems are individually quite
small, but you can see that the entropy of the larger system is larger for any
given energy than that of the smaller system, and the equilibrium state, in
which the temperatures are equal, has greatest overall entropy, correspond-
ing to its having greatest probability. The overall probability of any given
division of energy, a macrostate of the combined system, is proportional to
the product of the multiplicities of the corresponding macrostates of the
individual systems. So the probability of any particular microstate of the
smaller system is proportional to the multiplicity of the macrostate of the
larger system when the latter has the remainder of the fixed total energy.

Thus, we can write the probability of the state n of the system, having
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energy En, to within a normalization factor, as

Pn ∝ ΩR(Utot − En) , (1.1)

where Utot is the fixed total energy of the combined system plus reservoir,
and ΩR(Utot − En) is the multiplicity of the reservoir when its share of
the energy is Utot − En. We’ve suppressed the dependence of ΩR on the
particle number NR and the volume VR. The first of these is rigorously
fixed, since only thermal contact is allowed, and the volume can’t change
much, given that the amounts of energy exchanged with the system are
very small compared to the total energy of the reservoir.

Because the entropy of the reservoir is related to its multiplicity by
SR = k lnΩR, we can write the multiplicity in terms of the entropy:

ΩR(Utot − En) = eSR(Utot−En)/k . (1.2)

And, since the reservoir is much larger than the system, near the equilibrium
state the energy Utot is much greater than the system’s energy En. This
means it is a good approximation to expand the entropy of the reservoir in a
Taylor series about the energy Utot and truncate the result to the first-order
term:

SR(Utot − En) ≈ SR(Utot) +
[
∂S(Utot)

∂U

]
V,N

dU

= SR(Utot)−
1
T

En .

(1.3)

In the last line we used the definition of temperature in terms of ∂S/∂U ,
together with the fact that the difference between the energy of interest
and the reference energy Utot is dU = −En.

When we insert this approximation for SR back into the expression for
the multiplicity of the reservoir, we find the probability for state n of the
system to be

Pn ∝ eSR(Utot)/k e−En/kT . (1.4)

We can normalize the probability distribution by summing these values
over all microstates of the system, then dividing each by that sum. The
sum is

C =
∑

n

eSR(Utot)/k e−En/kT

= eSR(Utot)/k
∑

n

e−En/kT

= eSR(Utot)/k Z ,

(1.5)

where we’ve denoted the sum of the exponentials by Z. The normalized
probability of the nth state of the system is then

Pn =
eSR(Utot)/k e−En/kT

eSR(Utot)/k Z
, (1.6)
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which reduces immediately to

Pn =
e−En/kT

Z
. (1.7)

The exponential e−En/kT is called a Boltzmann factor, and the sum of
the Boltzmann factors of all the microstates of the system

Z =
∑

n

e−En/kT (1.8)

is called the partition function of the system.
[EOC, Mon. 3/13/2006, #27; HW08 closed, due Mon. 3/27/2006]

25


