
Reading assignment. Schroeder, section 2.5.

1 Large systems

Following up on the last two themes, the observation of increased num-
ber of associated microstates (or multiplicity) of macrostates having more
even partitioning of macroscopic parameters (only energy was considered)
between subsystems, and the ability to use Stirling’s approximation for
factorials of large numbers, we’ll take an explicit look at the narrowing of
the probability distribution for macrostates next. We could look at the
probability distribution of macrostates of a pair of interacting subsystems,
like we did before, but the manipulations and the interpretation will be a
bit simpler if we confine ourselves to a single system. We don’t want to
isolate that system completely, though, lest we be stuck with only a single
accessible macrostate.

So, we’ll work with a single two-state paramagnet in thermal contact
with a second, unspecified system. This permits the two systems to ex-
change energy, but we’ll look only at the states of the paramagnet, rather
than both together.

Recall that the energy in the presence of an external magnetic field
is proportional to the number of magnetic moments that are antialigned
with respect to the field, if we define the ground state to have zero energy.
Each macrostate is characterized by the number of flipped moments, and
the corresponding number of microstates, the multiplicity, is given by the
binomial coefficient

Ω(N, k) =
(

N

k

)
=

N !
k!(N − k)!

, (1)

k being the number of flipped moments.
Now suppose that the interaction with the other system causes some

energy to be dumped into our paramagnet, flipping some of the moments.
Further, suppose the result of this is that the moments of the paramagnet
individually have a probability α of being flipped. Then the probability
distribution for the number of flipped moments is just

P (k) =
(

N

k

)
αk(1− α)N−k . (2)

The idea there is that the flipping or lack thereof of individual moments
is independent of all the others, so the compound probability of having
a particular set of k moments flipped and the other N − k moments not
flipped is the product of the individual probabilities, αk(1 − α)N−k. But
there are

(
N
k

)
ways of choosing the k moments to flip, leading to the prob-

ability distribution above. That distribution is a famous one, the binomial
distribution.
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Before proceeding further, let’s check the normalization:

N∑
k=0

P (k) =
N∑

k=0

(
N

k

)
αk(1− α)N−k

= [α + (1− α)]N

= 1 .

(3)

The equality on the second line follows from the familiar expansion of a
binomial:

(a + b)N =
N∑

k=0

(
N

k

)
akbN−k . (4)

Now the single-moment probability α is closely related to the mean
number of flipped moments, a relationship we can determine by calculating
the average value of k. This is done by the usual weighted average with the
probability distribution P (k) providing the weights:

〈k〉 =
N∑

k=0

kP (k)

=
N∑

k=1

k
N !

k!(N − k)!
αkβN−k (let β = 1− α)

=
N∑

k=1

N !
(k − 1)!(N − k)!

αkβN−k .

(5)

This is somewhat similar to the normalization sum seen above, but the
lower limit of the sum is 1, rather than 0, and the first factorial in the
denominator is of k−1, instead of k. Taking that as a hint, let’s try shifting
the indices to see if we can recover something like the normalization sum
as a portion of the result. To that end, let

l = k − 1 and M = N − 1 , (6)

which leads to

〈k〉 =
M∑
l=0

(M + 1)!
l!(M + 1− l − 1)!

αl+1βM+1−l−1

= (M + 1)α
M∑
l=0

M !
l!(M − l)!

αlβM−l

= Nα .

(7)

The last step follows from recognition of the sum as the Mth power of
α + β = 1, together with the identification M + 1 = N . Thus, α is just
〈k〉 /N , the fractional mean moment flip.
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To characterize the width of the probability distribution, we could di-
rectly calculate the standard deviation by a method similar to that used to
find the mean. Instead, we’ll look at what happens to the distribution in
the large-N limit, which is our primary interest anyway. We’ll use Stirling’s
approximation to handle the factorials of large numbers:

N ! ∼ NNe−N
√

2πN . (8)

The large-N behavior of P (k) is then

P (k) =
N !

k!(N − k)!
αkβN−k

∼ NNe−N
√

2πNαkβN−k

kke−k
√

2πk(N − k)N−ke−N+k
√

2π(N − k)

=
(

Nα

k

)k (
Nβ

N − k

)N−k
√

N

2πk(N − k)
.

(9)

Now, we’ll want to see how the probability falls off away from the mean
value of k, so we’ll change to a variable measured relative to that:

x = k −Nα , (10)

which has the probability distribution

P (x) =
(

Nα

Nα + x

)Nα+x (
Nβ

Nβ − x

)Nβ−x

︸ ︷︷ ︸
call this f(x)

√
N

2πk(N − k)︸ ︷︷ ︸
ignore this

(11)

We can make further progress by working with the logarithm of f , which
will allow us to make use of the expansion of ln(1 + ε):

ln f(x) = (Nα + x) [ln(Nα)− ln(Nα + x)]
+ (Nβ − x) [ln(Nβ)− ln(Nβ − x)]

= (Nα + x)
[
ln(Nα)− ln(Nα)− ln

(
1 +

x

Nα

)]
+ (Nβ − x)

[
ln(Nβ)− ln(Nβ)− ln

(
1− x

Nβ

)] (12)

Since we’re mainly interested in x � Nα or Nβ, we’ll approximate the logs
by truncated series expansions:

ln(1 + ε) = ε− ε2

2
+

ε3

3
− . . . (13)
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keeping two terms. This gives

ln f(x) ≈ (Nα + x)
[
− x

Nα
+

1
2

( x

Nα

)2
]

+ (Nβ − x)

[
x

Nβ
+

1
2

(
x

Nβ

)2
]

≈ −x− x2

Nα
+

x2

2Nα
+ x− x2

Nβ
+

x2

2Nβ

= − x2

2N

(
1
α

+
1
β

)
= − x2

2Nαβ
.

(14)

Exponentiating this gives

f(x) ∼ e−x2/2Nαβ , (15)

which is just a Gaussian.
The probability distribution is proportional to this, but the square root

we’re ignoring is not the correct normalization factor for the Gaussian dis-
tribution. We won’t need the correct normalization, though.

We want to measure the deviation from the mean (x = 0) in units of
the full width of the original binomial distribution, so we’ll define

y =
x

N
, (16)

which would, in principle, allow us to plot Gaussians for different numbers
N of magnetic moments on the same graph in order to compare their widths.
In terms of the scaled variable y, our function is now

f(y) = e−N2y2/2Nαβ = e−Ny2/2αβ . (17)

Away from y = 0 this reaches 1/e times the maximum value at

f(ye) =
1
e

, (18)

which yields
Ny2

e

2αβ
= 1 , (19)

or

ye =

√
2αβ

N
. (20)

Since ye is proportional to 1/
√

N , if N = 1020, then the width is of
order 10−10 of the width of the plot, a rather skinny distribution, indeed.
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This means that macroscopic fluctuations away from the mean num-
ber of flipped moments are exceedingly unlikely—virtually nonexistent in
macroscopic systems. The most probable macrostate is the only one with
any significant probability of being observed.

Formally, one sometimes wants to speak of the actual limit of infinite
system size, in which fluctuations vanish completely—then the probability
distribution becomes a δ function. That limit is called the thermodynamic
limit, but the term is also often used loosely to refer to any macroscopic
system.

HW Problem. Schroeder problem 2.22, p. 66.
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