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Figure 1.10: Two masses coupled by a spring and attached to walls.

This splitting of the degenerate frequency by an external magnetic
field is called the Zeeman effect, after its discoverer Pieter Zeeman
was born in May 1865, at Zonnemaire, a small village in the isle of
Schouwen, Zeeland, The Netherlands. Zeeman was a student of the
great physicists Onnes and Lorentz in Leyden. He was awarded the
Nobel Prize in Physics in 1902. Zeeman succeeded Van der Waals

(another Nobel prize winner) as professor and director of the Physics Laboratory in
Amsterdam in 1908. In 1923 a new laboratory was built for Zeeman that included a
quarter-million kilogram block of concrete for vibration free measurements.

We could continue the analysis by plugging these frequencies back into the amplitude
equations 1.1.35. As an exercise, do this and show that the motion of the electron
(and hence the electric field) is circularly polarized in the direction perpendicular to the
magnetic field.

1.2 Two Coupled Masses

With only one mass and one spring, the range of motion is somewhat limited. There is
only one characteristic frequency ω2

0 = k
m

so in the absence of damping, the transient
(unforced) motions are all of the form cos(ω0t + ∆).

Now let us consider a slightly more general kind of oscillatory motion. Figure 1.10 shows
two masses (m1 and m2) connected to fixed walls with springs k1 and k3 and connected
to one another by a spring k2. To derive the equations of motion, let’s focus attention
on one mass at a time. We know that for any given mass, say mi (whose displacement
from equilibrium we label xi) it must be that

miẍi = Fi (1.2.1)

where Fi is the total force acting on the ith mass. No matter how many springs and
masses we have in the system, the force applied to a given mass must be transmitted
by the two springs it is connected to. And the force each of these springs transmits is
governed by the extent to which the spring is compressed or extended.
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Referring to Figure 1.10, spring 1 can only be compressed or extended if mass 1 is
displaced from its equilibrium. Therefore the force applied to m1 from k1 must be −k1x1,
just as before. Now, spring 2 is compressed or stretched depending on whether x1 − x2

is positive or not. For instance, suppose both masses are displaced to the right (positive
xi) with mass 1 being displaced more than mass 2. Then spring 2 is compressed relative
to its equilibrium length and the force on mass 1 will in the negative x direction so as to
restore the mass to its equilibrium position. Similarly, suppose both masses are displaced
to the right, but now with mass 2 displaced more than mass 1, corresponding to spring 2
being stretched. This should result in a force on mass 1 in the positive x direction since
the mass is being pulled away from its equilibrium position. So the proper expression of
Hooke’s law in any case is

m1ẍ1 = −k1x1 − k2(x1 − x2). (1.2.2)

And similarly for mass 2
m2ẍ2 = −k3x2 − k2(x2 − x1). (1.2.3)

These are the general equations of motion for a two mass/three spring system. Let us
simplify the calculations by assuming that both masses and all three springs are the
same. Then we have

ẍ1 = − k

m
x1 −

k

m
(x1 − x2)

= −ω2
0x1 − ω2

0(x1 − x2)

= −2ω2
0x1 + ω2

0x2. (1.2.4)

and

ẍ2 = − k

m
x2 −

k

m
(x2 − x1)

= −ω2
0x2 − ω2

0(x2 − x1)

= −2ω2
0x2 + ω2

0x1. (1.2.5)

Assuming trial solutions of the form

x1 = Aeiωt (1.2.6)

x2 = Beiωt (1.2.7)

we see that

(−ω2 + 2ω2
0)A = ω2

0B (1.2.8)

(−ω2 + 2ω2
0)B = ω2

0A. (1.2.9)

Substituting one into the other we get

A =
ω2

0

2ω2
0 − ω2

B, (1.2.10)
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and therefore

(2ω2
0 − ω2)B =

ω4
0

2ω2
0 − ω2

B. (1.2.11)

This gives an equation for ω2

(2ω2
0 − ω2)2 = ω4

0. (1.2.12)

There are two solutions of this equation, corresponding to ±ω2
0 when we take the square

root. If we choose the plus sign, then

2ω2
0 − ω2 = ω2

0 ⇒ ω2 = ω2
0. (1.2.13)

On the other hand, if we choose the minus sign, then

2ω2
0 − ω2 = −ω2

0 ⇒ ω2 = 3ω2
0. (1.2.14)

We have discovered an important fact: spring systems with two masses have two char-
acteristic frequencies. We will refer to the frequency ω2 = 3ω2

0 as “fast” and ω2 = ω2
0

as “slow”. Of course these are relative terms. Now that we have the frequencies we can
investigate the amplitude. First, since

A =
ω2

0

2ω2
0 − ω2

B, (1.2.15)

we have for the slow mode (ω = ω0)

A = B, (1.2.16)

which corresponds to the two masses moving in phase with the same amplitude. On the
other hand, for the fast mode

A = −B. (1.2.17)

For this mode, the amplitudes of the two mass’ oscillation are the same, but they are
out of phase. These two motions are easy to picture. The slow mode corresponds to
both masses moving together, back and forth, as in Figure 1.11 (bottom). The fast mode
corresponds to the two masses oscillating out of phase as in Figure 1.11 (top).

1.2.1 A Matrix Appears

There is a nice way to simplify the notation of the previous section and to introduce a
powerful mathematical at the same time. Let’s put the two displacements together into a
vector. Define a vector u with two components, the displacements of the first and second
mass:

u =

[

Aeiωt

Beiωt

]

= eiωt

[

A
B

]

. (1.2.18)
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Figure 1.11: With two coupled masses there are two characteristic frequencies, one “slow”
(bottom) and one “fast” (top).

We’ve already seen that we can multiply any solution by a constant and still get a
solution, so we might as well take A and B to be equal to 1. So for the slow mode we
have

u = eiω0t

[

1
1

]

, (1.2.19)

while for the fast mode we have

u = ei
√

3ω0t

[

1
−1

]

. (1.2.20)

Notice that the amplitude part of the two modes

[

1
1

]

and

[

1
−1

]

(1.2.21)

are orthogonal. That means that the dot product of the two vectors is zero: 1 × 1 +
1 × (−1) = 0.6 As we will see in our discussion of linear algebra, this means that the
two vectors point at right angles to one another. This orthogonality is an absolutely
fundamental property of the natural modes of vibration of linear mechanical systems.

6
[

1
1

]

·

[

1
−1

]

≡ [1, 1]

[

1
−1

]

= 1 · 1 − 1 · 1 = 0.
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1.2.2 Matrices for two degrees of freedom

The equations of motion are (see Figure 1.10):

m1ẍ1 + k1x1 + k2(x1 − x2) = 0 (1.2.22)

m2ẍ2 + k3x2 + k2(x2 − x1) = 0. (1.2.23)

We can write these in matrix form as follows.
[

m1 0
0 m2

] [

ẍ1

ẍ2

]

+

[

k1 + k2 −k2

−k2 k2 + k3

] [

x1

x2

]

=

[

0
0

]

. (1.2.24)

Or, defining a mass matrix

M =

[

m1 0
0 m2

]

(1.2.25)

and a “stiffness” matrix

K =

[

k1 + k2 −k2

−k2 k2 + k3

]

(1.2.26)

we can write the matrix equation as

M ü +Ku = 0 (1.2.27)

where

u ≡
[

x1

x2

]

. (1.2.28)

This is much cleaner than writing out all the components and has the additional advan-
tage that we can add more masses/springs without changing the equations, we just have
to incorporate the additional terms into the definition of M and K.

Notice that the mass matrix is always invertible since it’s diagonal and all the masses
are presumably nonzero. Therefore

M−1 =

[

m1
−1 0

0 m2
−1

]

. (1.2.29)

So we can also write the equations of motion as

ü +M−1Ku = 0. (1.2.30)

And it is easy to see that

M−1K =

[

k1+k2

m1

−k2

m1−k2

m2

k2+k3

m2

]

.
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As another example, let’s suppose that all the masses are the same and that k1 = k3 = k.

Letting ω0 =
√

k/m as usual and defining Ω =
√

k2/m, we have the following beautiful

form for the matrix M−1K:

M−1K = Ω2

[

1 −1
−1 1

]

+ ω2
0

[

1 0
0 1

]

. (1.2.31)

In the limit that Ω goes to zero the coupling between the masses becomes progressively
weaker. If Ω = 0, then the equations of motion reduce to those for two uncoupled
oscillators with the same characteristic frequency ω0.

1.2.3 The energy method

In this example of two coupled masses, it’s not entirely trivial to keep track of how the
two masses interact. Unfortunately, we’re forced into this by the Newtonian strategy
of specifying forces explicitly. Fortunately this is not the only way to skin the cat. For
systems in which energy conserved (no dissipation, also known as conservative systems),
the force is the gradient of a potential energy function.7

Since energy is a scalar quantity it is almost always a lot easier to deal with than the
force itself. In our 1-D system of masses and springs, that might not be apparent,
but even so using energy simplifies life significantly. Think about it: the potential en-
ergy of the system must be the sum of the potential energies of the individual springs.
And the potential energy of a spring is the spring constant times the square of amount
the spring is compresses or extended. So the potential energy of the system is just
1
2
[k1x

2
1 + k2(x2 − x1)

2 + k3x
2
2]. Unlike when dealing with the forces, it doesn’t matter

whether we write the second term as x2 − x1 or x1 − x2 since it gets squared.

The energy approach is easily extended to an arbitrary number of springs and masses.
It’s up to us to define just what the system will be. For instance do we connect the end
springs to the wall, or do we connect the end masses? It doesn’t matter much except in
the labels we use and the limits of the summation. For now we will assume that we have
n springs, the end springs being connected to rigid walls, and n − 1 masses. So, n − 1
masses {mi}i=1,n−1 and n spring constants {ki}i=1,n. Then the total energy is

E = K.E. + P.E. =
1

2

n−1
∑

i=1

miẋ
2
i +

1

2

n
∑

i=1

ki(xi − xi−1)
2. (1.2.32)

7The work done by a force in displacing a system from a to b is
∫ b

a
F dx. If F = −

dU

dx
, then

∫ b

a
F dx =

−

∫

dU = −[U(b) − U(a)]. In other words the work depends only on the endpoints, not the path taken.
In particular, if the starting and ending point is the same, the work done is zero. This is true in 3
dimensions too where it is easier to visualize complicated paths.
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To derive the equations of motion, all we have to do is set mjẍj = − ∂U
∂xj

. Taking the

derivative is slightly tricky. Since j is arbitrary (we want to be able to study any mass),
there will be two nonzero terms in the derivative of U , corresponding to the two situations
in which one of the terms in the sum is equal to xj . This will happen when

• i = j, in which case the derivative is kj(xj − xj−1).

• i− 1 = j, in which case i = j + 1 and the derivative is −kj+1(xj+1 − xj).

Putting these two together we get

mjẍj = − ∂U

∂xj
= kj+1(xj+1 − xj) − kj(xj − xj−1). (1.2.33)

Once you get the hang of it, you’ll see that in most cases the energy approach is a lot
easier than dealing directly with the forces. After all, force is a vector, while energy is
always a scalar. For now, let’s simplify Equation 1.2.33 by taking all the masses to be
the same m and all the spring constants to be the same k. Then, using ω2

0 = k/m again,
we have

1

ω2
0

ẍj = xj+1 − 2xj + xj−1. (1.2.34)

1.2.4 Matrix form of the coupled spring/mass system

We can greatly simplify the notation of the coupled system using matrices. Let’s consider
the n mass case in Equation 1.2.34. We would like to be able to write this as

1

ω2
0

ü ≡



























ẍ1

ẍ2

ẍ3

.

.

.
ẍn−1



























= some matrix dotted into



























x1

x2

x3

.

.

.
xn−1



























≡ u. (1.2.35)

The symbol ≡ means the two things on either side are equal by definition.

Looking at Equation 1.2.34 we can see that this matrix must couple each mass to its
nearest neighbors, with the middle mass getting a weight of −2 and the neighboring
masses getting weights of 1. Thus the matrix must be
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−2 1 0 0 . . .
1 −2 1 0 . . .
0 1 −2 1 . . .
...

. . .

0 . . . 0 1 −2



















. (1.2.36)

So we have

1

ω2
0

ü =



























ẍ1

ẍ2

ẍ3

.

.

.
ẍn−1



























=



















−2 1 0 0 . . .
1 −2 1 0 . . .
0 1 −2 1 . . .
...

. . .

0 . . . 0 1 −2













































x1

x2

x3

.

.

.
xn−1



























= u. (1.2.37)

If we denote the matrix by K, then we collapse these n coupled second order differential
equations to the following beautiful vector differential equation.

1

ω2
0

ü = K · u. (1.2.38)

We don’t yet have the mathematical tools to analyze this equation properly, that is why
we will spend a lot of time studying linear algebra. However we can proceed. Surprisingly
enough if we add even more springs and masses to our system, we will get an equation
we can solve analytically, but we need to an an infinite number of them! Let’s see how
we can do this.

First, let’s be careful how we interpret the dependent and independent variables. If I write
the vector of displacements from equilibrium as u, then its components are (u)i ≡ xi.
Let’s forget about x and think only of displacements u or (u)i. The reason is we want
to be able to use x as a variable to denote the position along the spring/mass lattice
at which we are measuring the displacement. Right now, with only a finite number of
masses, we are using the index i for this purpose. But we want to let i go to infinity and
have a continuous variable for this; this is what we will henceforth use x for. But before
we do that, let’s look at how we can approximate the derivative of a function. Suppose
f(x) is a differentiable function. Then, provided h is small

f ′(x) ≈ f(x+ h
2
) − f(x− h

2
)

h
. (1.2.39)

We can do this again for each of the two terms on the right hand side and achieve an
approximation for the second derivative:

f ′′(x) ≈ f(x+ h) − f(x)

h2
− f(x) − f(x− h)

h2

=
1

h2
(f(x + h) − 2f(x) + f(x− h)) . (1.2.40)



1.2. TWO COUPLED MASSES 27

Now suppose that we want to look at this approximation to f ′′ at points xi along the
x-axis. For instance, suppose we want to know f ′′(xi) and suppose the distance between
the xi points is constant and equal to h. Then

f ′′(xi) ≈
1

h2
(f(xi+1) − 2f(xi) + f(xi−1)) . (1.2.41)

Or, if we denote f(xi) by fi, then the approximate second derivative of the function at
a given i location looks exactly like the ith row of the matrix above. In the limit that
the number of mass points (and hence i locations) goes to infinity, the displacement u
becomes a continuous function of the spatial location, which we now refer to as x, and K
becomes a second derivative operator. To get the limit we have to introduce the lattice
spacing h:

1

ω2
0

ü = h2 1

h2
K · u. (1.2.42)

We can identify each row of 1
h2K · u as being the approximate second derivative of the

corresponding displacement. But we can’t quite take the limit yet, since ω0 is defined
in terms of the discrete mass and it’s not clear what this would mean in the limit of a
continuum. So let’s write this as

ü =
k

m

h3

h3
K · u =

k

h

h3

m

1

h2
K · u (1.2.43)

so that in the limit that the number of mass points goes to infinity, but the mass of
each point goes to zero and the spacing h goes to zero, we can identify m

h3 as the density
and k

h
as the stiffness per unit length. Let’s call the latter E. Now in this limit u is no

longer a finite length vector, but a continuous function of the position x. Since it is also
a function of time, these derivatives must become partial derivatives. So in this limit we
end up with

∂2u(x, t)

∂t2
=
E

ρ

∂2u(x, t)

∂x2
. (1.2.44)

This is called the wave equation.

Exercises

mm

k kk’
1.1 Write down the equations of motion for the system above in terms of the displace-

ments of the two masses from their equilibrium positions. Call these displacements
x1 and x2.

Answer: The equations of motion are


