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In the News

Full characterization of polarization states of light via
direct measurement

Jeff Z. Salvail, Megan Agnew, Allan S. Johnson, Eliot Bolduc, Jonathan Leach & Robert W.
Boyd

Salvail, J. Z., Agnew, M., Johnson, A. S., Bolduc, E., Leach, J., & Boyd, R. W. (2013).
Full characterization of polarization states of light via direct measurement. Nat Photon,



A Note on Differential Equations

 Fundamental way to define functions
— Other fundamental way?

e Solutions provide insight into physical systems

* Ways to derive differential Eqns?



The Nonlinear Wave Equation

* Where do we get the wave Equation?

V-D=p,
V-B=0
VxH=J4+9d,D
VXE=-0,B

 Maxwell’s Equations?



Fine... Where do we get Maxwell’s Equations?

* The Easy way... Considering charges and
thinking and stuff...

* Special Relativity and the Coulomb Potential!
http://www.cse.secs.oakland.edu/haskell/Special Relativity and Maxwells Equations.pdf

e Also...

Kaluza—Klein theory

From Wikipedia, the free encyclopedia

This article is about gravitation and electromagnetism. For the mathematical generalization of K theory, see KK-theory.

In physics, Kaluza—-Klein theory (KK theory) is a model that seeks to unify the two fundamental forces of gravitation and electromagnetism. The theory was first
published in 1921. It was proposed by the mathematician Theodor Kaluza who extended general relativity to a five-dimensional spacetime. The resulting equations
can be separated into further sets of equations, one of which is equivalent to Einstein field equations, another set equivalent to Maxwell's equations for the
electromagnetic field and the final part an extra scalar field now termed the "radion”.

http://en.wikipedia.org/wiki/Kaluza-Klein_theory



Ok let’s do some deriving

First approximation (pretty much exact)

V-D=0 D=¢E+P VXH:a;(60E+P)
V-B=0  B=mH

V)(H:atD V)(E_—/,LOaH
VXE=-0,B

VXXXE=—-U,0 (VXH)
\&X\ "

N\
\&%%XVXE_—C—B E— ‘Lloa

)




No known analytical solutions (by a long shot)....

VxVxE:—%BtZE—,anfP
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No known analytical solutions (by a long shot)....

VxVxE:—izafE—,uO@fP
C

VXVXE= —V2E+V(V-E) Use this vector identity

1 Throw away this term (Approximation!
VE=-—03"E- 11,9, P y (App )
C

Things are starting to look manageable.. But wait! There’s more



1
~V’E=-—0,"E—,0,’P P=P +P,

C
/N
Where we have the following relations: Linear Nonlinear
t
P(rt)=¢ | x"(t=1")E(r")dt

—0Q

t t

t
Py (r1)=¢ | dt, jdt2 Jdt3)((3)(t—tl',t—t2',t—t3')'E(r,tl)'E(r,tz)'E(r,t3)

—00

0 using D = EOE + P

2
€,C

V’E -

atzD = Hy atZPNL

Ok... Still no analytic solutions known....



Who needs extra dimensions?

Unfortunately we can’t just throw them away for no reason...

Let’s look for a bit at linear propagation to get some ideas of when
It’s valid to throw them away

1

2
€,C

V’E-—9°D=0
Makes a lot of sense to look at this equation in the frequency domain

E(r,0)= J E(r,t)exp(iot)dt Define a Fourier Transform

using 2 7 (1) o
S0 0z V’E+e" (w)—E=0
=¢c 'k C



Quick Synopsis of what just happened

. . 1

Multiply by expiiwr) and then integrate over all t 20 2 _
V’E-—9’D=0
1 €,C
JVzEelwtdt S J 0> De'dt =0
Switch derivatives with integrals and use E(r,a)) — J- E(r,t)exp(ia)t)dt
~ 1 . B
VE-— [|(9,D)e de=0
€,C
——

The second term is not so nice (afD)ei“” = 8f(De“‘”)+ w’e'” D —2iwe” d,D

Do this again, and eventually...

D(r,w)= ]o D(r,t)exp(iot)dt

VE+"(0)—5E=0 wih  e(@)=1+F()



z. However, Lebesgue integration theory has a very powerful criterion called Lebesgue
Dominated Convergence Theorermn (LDCT). This tells us that if the limit in Eq. 5 exists

for almost all z, and there is a function H (z) = 0, f:H (z)dz < oo, such that

flz,t+7)— f(z,t)

-

< H (z), (6)

then Ea. 1 holds.

http://www.math.ntnu.no/~hek/Optimering2012/TheoremA13.pdf



ew)=1+ (@)= (n+icc/2w)> But a=0 = &w)=n’(®)

2
~ - ~
V°E + nz(a))—zE =0 Helmholtz Eqn.
C

The next part of this story is gunna go down exactly the way you think

Because we’re talking about fibers, let’s write this in cylindrical coordinates

2 - r- 2 - 2 T 2
0 €+ : 8E+ 128 ]_;Z+8 §+n2(w)w—2E:O
dp- padp p°dp° 0z c

Solve by separation of variables for one component of the field:

E.(r,0)= A(@)F(p)exp(img)exp(ifz)

http://mathworld.wolfram.com/Laplacian.html



Picture the Problem

. . . claddin
Solve for function in two regions g

Match boundary conditions
on tangential component of field

acceptance [,

cone
/ S,




E.(r,®) = A()F(p)exp(imp)exp(ifz)
\

Radial Function/ Solves this equation

3, F(p) 420, F(p) [ 2 2 () =0

o, c

Once again... Function defined by the differential equation it solves

. . , no’
c¢J,, (—ipn)+c,N, (—ipn) n=,|B" - 2
Want propagating solution in the core p<a
2602
T (pp)+eN, (pp) =" p

c, is zero because we want something that models reality



Want exp. decay in the cladding p > a

2.2
e (ap) ek, (ap)  g= B ="

Modified Bessel Functions (1%t and 2"? kind), c, is zero because | . is growing

~ ~

Now we match the boundary conditions for tangential portionsof FE & H

l
l
l

I, 0 and I:Iq) all must match at p = a, Eigenvalue equation of the form

{J'mwa) . K'm(pa)}[ J'(pa)  n; K'm(pa)}:(Mﬂko(nf —n§>j2
pJ,(pa) ¢K,(pa) | pJ,(pa) n' gK,(pa) an,p’q’

2 2 2 2 2
We also need p +q = (I/l1 —n, )ko

There are several solutions for each B which we write as B, (I,m are integers)

2 25\1/2
Also, define a normalized frequency V= pP.a= koa(nl —n. )



V=pa= koa(nl2 — nf )” 2

Used to determine how many different modes a fiber can support

w-B Diagram

Brnin Bmax Ac ( 'ad/m)

Straight lines of dw/dp correspond to the group velocity of the different
modes. The group velocities of the guided modes all lie between the phase
velocities for plane waves in the core or cladding ¢/n, and c¢/n,



mode index |

b
np

"

2 3
mode index m

Fiber Modes

If either E_H. are zero then we recover
TE,,, or TM,, modes

If neither are zero then we get hybrid modes

V =k,a NA

NA = numerical aperture

V < 2.5 single mode. Number of modes scales with V2

http://www.rp-photonics.com/fibers.html



Mode Properties

The lowest order mode has 3-components but
one of them dominates

Approximately linearly polarized
Fundamental Mode ~ J,(p p) (p <a)
Generally approximated as a Gaussian

Modes propagate independently in multimode
configuration

Nonlinearity couples them just like
independent frequencies



Nonlinear Wave Equation (again...)
1

2
€,C

Separate parallel and perpendicular derviatives

V'E - atzD = Hy atZPNL

[9.24V 2 —%afz)—%afpm]] E=0

d’Alembert's solution!

d —i\/—%a D+V > —%a 2p :ﬂ[[az+i\/—%8t2D+Vl2 —%a,ZPNL 1E=0

Investigate forward traveling waves




aE—l\/ ‘fbfat D+V - ‘l‘;at P, E=0

Immediately expand in a Taylor series
. 1 -1 2 :u“O 2 . 2
18ZEz—H —EH VL —E8t PNL E with H E—Ea D

Insert Envelope forms into the equation

E=E, (r’t)ei(ﬁoz—wof) D=D, (r,t)ei(ﬁoz—wof) PNL =P, (r,t)ei(ﬁoz—wof)

. 1 A A .
i0.E, = B,E,— H,E, - > Hy 1 [VLZEO + uowoszPo] with 7 = (H wLaj
0

At this point we shift to a retarded frame
that travels at a group velocity of 1/,

T=1—-[z



. | S A
id E, = (ﬁo +1p, ar)Eo —H\Lk, — EHO 1|:VJ_2EO T .uowozTZPO]

Now Fourier transform to the frequency/spatial-frequency domain
using the same technique as before

Things simplify a lot and we’ll be able to discuss some terms...

N F = 2 C (42 2\ | |CHoD 5
id,E,=+| B(o) ﬂ0+,81Aa))]EO+[27r na)(f" +f, )} P

/ 7
Dispersion Diffraction Nonlinearity

Let’s talk about these things individually



But First!

Fourier transform back to the time domain and
non-dimensionalize this thing
(This time we’ll use a trick)

id.E, =—| B(w)-(B, + BAw) |E, +[27r n—(f +f )} L p

i0,0A0 and -47°(f +f}) eV,

Leads to
: 1 J2F ¢ 25 30 (3 2
laon —5132 (a)o) By — 2no, VJ_ E, _En_cl |E, I E,

Note that Aw translates to time derivatives, to simplify things we’ve Taylor expanded

1 5 k
B@) = B@,)+ B(@0)A0+=B,(©,) A0 + ..+ g, = I P@)

dw*



Agrawal suggest normalizing the E-field envelope by sqrt(P,/A.«)

Thatis: 4 = Lo and inserting into  i9_E, =lﬁ2(wo)a 213?0—LVL2EO—§&;((3) |E, I’ E,
VB 1Ay ‘ 2 t 2nw, 2 ne

: 1 3w
lazAO\/Po /Aeﬁ = 5:32 (wo)arzAO\/Po /Aeﬁ _TZ)()Vonxlp() /Aeﬁ _En_gxo) lAO\/Po /Aeﬁ 3 AO\/PO /Aeﬁ

Cancelling
1 C 3w P
i0 A, =—8,(w,)9,*A,— V 2A |- ==y =014 P
A =3B (@0)3) Al oV APy Aeﬁ/ixo A
Dispersion Diffraction Nonlinearity
.p 2 2
(JJIFCey)| dxdy)
where the effective mode are is defined as Aeﬁ: = 2
JJIFGe,y) dxdy)

oo

Now we can define some non-dimensional parameters



Define a non-dimensional time by introducing the normalization: f=¢ T
Where tis the characteristic pulse width
Derivatives in ti h dt d L or1o 19
erivatives in time are changed to rea = ~=——=
© ot \dt)ot 7ot
o | o [P 1B, o
Inserting into our equation we get for the dispersion term —[32 at E_ZBt
T
- 15, 4”2(00 2
1aon::5T—za;Ao it V. A - 1A, 1" A,
0 eff
TZ
Introduce the Dispersion Length L, = W and inserting
sgn 4n,w
18A0——g(ﬁ2)a A=V A B LA P A,

L, PN off




2
_ W, 2
pif = <R = 1 = Eﬁowo

Introduce the Diffraction Length L and inserting

L 0 dz ) d 1 o
Derivatives on z are changed to: Y (az)az L, 92
1 1sgn([32) , 4n,m, )
0.4y = =0 A - oV A - LR A E A
Dif D 0~~0 eff
e : . : ~  2Xx . .
Similarly define a length scale for the transverse directions x=— and inserting
Wo
0 _ (ax) d_2 9
ox \dx/dx w,dx

1 Isgn(By),, 1 @, )
1L 0.4y =2 aAOLVlAO 4APOIAOIAO

Dif LD Dif eff

1 n,w
Finally define a nonlinear length scale L,, = —— wherey =4—=-=" [=] meters and inserting
}/P() CAeﬁ‘

0,4, = g a2V A A A,

LDif LD Lsz N



So now we can talk about Physics!

1L—a AO_—Sgn(ﬁz)a AO——Vl AO——IAOI2A0

Dif LD sz N

Take a quick look when there’s only diffraction and the nonlinearity

i0 A, =-V 2A, — D’fIAOIZAO

The nonlinear Schrédinger equation is a partial differential equation, applicable to classical and quantum mechanics.

Classical equation

The classical field equation (in dimensionless form) ig:11]

Nonlinear Schrodinger equation (Classical mechanics)

10 = — 5()2 W+ K[| 2

http://en.wikipedia.org/wiki/Nonlinear_Schrodinger_equation



A note about length scales

2
T 1 5 1 n,n
- = _ — — 2%
ﬁ2 y 0 C eff
Dispersion Length Diffraction Length Nonlinear Length

The shortest length tends to dominate the propagation




Neglect terms to see what other terms do

1 1sgn(B,) > 2
SLEPILE. itV P E YL IR LY R I
1 L, A= L A L, A L Ay 1" Ay

First let’s take a look at just the nonlinear term

L.,
i, A, =— Lle leAs E A Scaling goes like a ratio of the lengths
NL

Revert to a dimension-full version of this term

3
i0_E, = —%x@ |E, P E, = —ZBO%IOEO
0 0

This equation has a formal solution of the form

E,(r,dz) = exp(-2dzf3, &Io )Ey(r,0)
ny

With nonlinear phase accumulation

n
NL — 2[30 n_zlodZ <— B-Integral!
0




Self-Focusing

n
NL = 2ﬁo _2IodZ

n,

Consider the case when |, has the shape of a Gaussian

azoexp( r’lrl) ——> —aoﬁo exp( r’/r))dz
Taylor expand the Gaussian profile
s Oy 1 "2f dz ayn,

> LAk

f’< ‘_’< phase fronts




Self-Phase Modulation

n
NL = 2ﬁo _210dZ

n,
Consider the case when |, has the shape of a Gaussian

Iy= %exp(_ﬁ /T%) — O = Aoy &exp(—tz /T*)dz
L

Let’s take a look at the instantaneous color as a function of time in the pulse

n, 2t

a)mst = a) at¢NL = a) _aOﬁOdZ eXp( t /T )

n,

Again... Taylor expand the Gaussian profile

., =0, + bt b=2a,p,

inst
n,t



Self-Phase Modulation

n,

®,., =0, 1-2a,dz—=1

CT

Effect is Similar to the Doppler shift for an object moving at speed v,

ttve  O=By(z+v.)—w,

d
\ 0, :a)o(l—v/c)%vz2—Zaon2
T

inst



Self-Phase Modulation
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Adapted from Rick Trebino



(a lot of) Self-Phase Modulation

z 0.8+ — Intensity||
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Adapted from Rick Trebino

Oscillations occur in spectrum because all
frequencies occur twice and interfere, except for
inflection points, which yield maximum and minimum
frequencies.



Operator Form NLS

1 lsgn(ﬁz) 2 | 1 2
i—d, Ay =———50, A ——V A ——1A I A
Ly, 2 L, Ly, + L,

Assume single mode propagation in a fiber

1 lsgn(ﬂz) 5 | 5
i—0d Ay =———"29,"A — A,
LDif 2 LD LNL AO AO

Or

.Sgn(ﬁz) LDif 2 -LDif 2
0 = — 0 | A, |
A I 5 L At L. A" A,

Define Operators

Ly,

A L. A
p=—inb) Dif 5 2 N=i=2l) AP
LD LNL

_— S~

Dispersion aon = [IA) + N]AO Nonlinearity




Split Step Fourier Method

* We assume the distance h we are propagating
is very small

* This allows us to say that the dispersion and
nonlinearity act separately

* Propagate in two steps
— First step, only nonlinearity ( D=0 )
— Second step, only dispersion only ( N=0)



This allows us to write A (z+h,t)= exp(hlA))eXp(hN)A(z,t)

Unfortunately exponentials of operators can be tricky... but don’t worry

exp(hD)B(z,t) = F ' { exp[hD(~iA@)]F{B(z,1)} }
This is helpful because...

D(—iAw) = Exp[— sgn(B,) Loy Aw}

...Is just a number now

Define Soliton Number N,=,L,/Ly, = \/VP()Tz /|ﬁz|



What’s a Soliton?

http://en.wikipedia.org/wiki/Soliton#Definition

Definition
A single, consensus definition of a soliton is difficult to find. Drazin & Johnson (1989, p. 15) ascribe three properties to solitons:

1. They are of permanent form;
2. They are localised within a region;
3. They can interact with other solitons, and emerge from the collision unchanged, except for a phase shift.

More formal definitions exist, but they require substantial mathematics. Moreover, some scientists use the term soliton for phenomena that do not quite have these three properties (for instance, the "light bullets' of
nonlinear optics are often called solitons despite losing energy during interaction).

, 1
laonzlezazon_%leleo Vi
A (z,t)= A" sech(t / T)exp(ixz)

We can show that this is a solution by plugging it in

B, 1
TR

2

Note here that the group delay dispersion and nonlinearity have opposite signs



The NLS can model propagation pretty well

simulation

experiment

© o ©
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