MATH-332: Linear Algebra
Chapter: 5

Eigenvalues and Eigenvectors

Section 5.2: The Characteristic Equation
pgs. 310-316
July 21, 2009

Lecture: The Characteristic Equation	
Topics:	Characteristic Equation Spectra Algebraic Multiplicity Problems Similar Matrices
	Prac: 1
Prob: $7,9,17,13,21,22,23,25$	

Section Goals

- Understand how eigenvalues can be found by requiring that $\mathbf{A}-\lambda \mathbf{I}$ be a non-invertible matrix.
- Develop necessary criteria for matrices to share the same spectrum.

Section Objectives

- Define the characteristic polynomial through the determinant of $\mathbf{A}-\lambda \mathbf{I}$ and explain how the fundamental theorem of algebra states that this $n^{\text {th }}$-degree polynomial will have n-roots counting algebraic multiplicity.
- Provide examples of spectra calculation highlighting the concept of algebraic multiplicity.
- Prove theorem 5.2.4 on page 315, which states that similar matrices have the same characteristic polynomial and thus the same spectrum.

