MATH-332: Linear Algebra

Eigenvalues and Eigenvectors

Section 5.2: The Characteristic Equation

pgs. 310 - 316

	<u>Lecture</u> : The Characteristic Equation
Topics:	Characteristic Equation
	Spectra
	Algebraic Multiplicity
	Similar Matrices
Problems	Prac: 1
	Prob: 7, 9, 17, 13, 21, 22, 23, 25

Section Goals

- Understand how eigenvalues can be found by requiring that $\mathbf{A} \lambda \mathbf{I}$ be a non-invertible matrix.
- Develop necessary criteria for matrices to share the same spectrum.

Section Objectives

- Define the characteristic polynomial through the determinant of $\mathbf{A} \lambda \mathbf{I}$ and explain how the fundamental theorem of algebra states that this n^{th} -degree polynomial will have *n*-roots counting algebraic multiplicity.
- Provide examples of spectra calculation highlighting the concept of algebraic multiplicity.
- Prove theorem 5.2.4 on page 315, which states that similar matrices have the same characteristic polynomial and thus the same spectrum.

Chapter: 5

July 21, 2009