MATH225, Fall 2008
Worksheet 5 (2.2-2.3, 3.1-3.2)

Name:
Section:

For full credit, you must show all work and box answers.

1. Given

$$
\begin{aligned}
\frac{d x}{d t} & =y\left(x^{2}+y^{2}-1\right) \\
\frac{d y}{d t} & =-x\left(x^{2}+y^{2}-1\right)
\end{aligned}
$$

(a) Is this system linear?
(b) Find the equilibrium solutions for this system.
2. Given

$$
\begin{aligned}
& \frac{d x}{d t}=2 x+y^{3} \\
& \frac{d y}{d t}=y
\end{aligned}
$$

(a) Is this system linear?
(b) Find the general solution to the system.
(c) Find the particular solution that satisfies the initial condition $(x(0), y(0))=(1,1)$.
3. Given

$$
\begin{aligned}
& \frac{d x}{d t}=2 x+3 y \\
& \frac{d y}{d t}=x
\end{aligned}
$$

(a) Is this system linear?
(b) Rewrite the system in matrix-vector form.
(c) Are $\mathbf{Y}_{1}(t)=\binom{-e^{-t}}{e^{-t}}$ and $\mathbf{Y}_{2}(t)=\binom{-e^{-t}}{2 e^{-t}}$ solutions to this system?
(d) Are $\mathbf{Y}_{1}(t)=\binom{-e^{-t}}{e^{-t}}$ and $\mathbf{Y}_{3}(t)=\binom{12 e^{3 t}}{4 e^{3 t}}$ solutions to this system?
(e) Are $\mathbf{Y}_{1}(t)$ and $\mathbf{Y}_{3}(t)$ linearly independent?
(f) Find the general solution to the system. What principle are you using to do this? (Hint: You do not need to calculate eigenvalues and eigenvectors.)
4. Given

$$
\begin{aligned}
& \frac{d x}{d t}=5 x+4 y \\
& \frac{d y}{d t}=9 x
\end{aligned}
$$

(a) Is this system linear?
(b) Find the general solution to the system.
(c) Find the particular solution that satisfies the initial condition $(x(0), y(0))=(2,15)$. Write your solution as one vector.

