EM waves: energy, resonators

Scalar wave equation
Maxwell equations to the EM wave equation
A simple linear resonator
Energy in EM waves
3D waves

Simple scalar wave equation

- $2^{\text {nd }}$ order PDE $\quad \frac{\partial^{2}}{\partial z^{2}} \psi(z, t)-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \psi(z, t)=0$
- Assume separable solution $\psi(z, t)=f(z) g(t)$

$$
\frac{1}{f(z)} \frac{\partial^{2}}{\partial z^{2}} f(z)-\frac{1}{c^{2}} \frac{1}{g(t)} \frac{\partial^{2}}{\partial t^{2}} g(t)=0
$$

- Each part is equal to a constant A

$$
\begin{aligned}
& \frac{1}{f(z)} \frac{\partial^{2}}{\partial z^{2}} f(z)=A, \frac{1}{c^{2}} \frac{1}{g(t)} \frac{\partial^{2}}{\partial t^{2}} g(t)=A \\
& f(z)=\cos (k z) \rightarrow-k^{2}=A, g(t)=\cos (\omega t) \rightarrow-\omega^{2} \frac{1}{c^{2}}=A \\
& \omega= \pm k c \quad \operatorname{Sin}() \text { also works as a second solution }
\end{aligned}
$$

Full solution of wave equation

- Full solution is a linear combination of both

$$
\psi(z, t)=f(z) g(t)=\left(A_{1} \cos k z+A_{2} \sin k z\right)\left(B_{1} \cos \omega t+B_{2} \sin \omega t\right)
$$

- Too messy: use complex solution instead:

$$
\begin{aligned}
& \psi(z, t)=f(z) g(t)=\left(A_{1} e^{i k z}+A_{2} e^{-i k z}\right)\left(B_{1} e^{i \omega t}+B_{2} e^{-i \omega t}\right) \\
& \psi(z, t)=A_{1} B_{1} e^{i(k+\alpha+\alpha)}+A_{2} B_{2} e^{-i(k+\alpha t)}+A_{1} B_{2} e^{i(k-\omega t)}+A_{2} B_{1} e^{-i(k-\omega t)} \\
& \text { - Constants are arbitrary: rewrite }
\end{aligned}
$$

$$
\psi(z, t)=A_{1} \cos \left(k z+\omega t+\phi_{1}\right)+A_{2} \cos \left(k z-\omega t+\phi_{2}\right)
$$

Interpretation of solutions

- Wave vector

$$
k=\frac{2 \pi}{\lambda}
$$

- Angular frequency

$$
\omega=2 \pi \nu
$$

- Wave total phase: $\Phi=k z-\omega t+\phi$
- "absolute phase": ϕ
- Phase velocity: c $\quad \Phi=k z-k c t+\phi=k(z-c t)+\phi$
$\Phi=$ constant when $z=c t$
$\psi(z, t)=A_{1} \cos \left(k z+\omega t+\phi_{1}\right)+A_{2} \cos \left(k z-\omega t+\phi_{2}\right)$

$$
\text { Reverse (to }-z) \quad \text { Forward }(\text { to }+z)
$$

Maxwell's Equations to wave eqn

- The induced polarization, \mathbf{P}, contains the effect of the medium:

$$
\begin{array}{ll}
\vec{\nabla} \cdot \mathbf{E}=0 & \vec{\nabla} \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\
\vec{\nabla} \cdot \mathbf{B}=0 & \vec{\nabla} \times \mathbf{B}=\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}+\mu_{0} \frac{\partial \mathbf{P}}{\partial t}
\end{array}
$$

Take the curl:

$$
\vec{\nabla} \times(\vec{\nabla} \times \mathbf{E})=-\frac{\partial}{\partial t} \vec{\nabla} \times \mathbf{B}=-\frac{\partial}{\partial t}\left(\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}+\mu_{0} \frac{\partial \mathbf{P}}{\partial t}\right)
$$

Use the vector ID:

$$
\begin{aligned}
& \mathbf{A} \times(\mathbf{B} \times \mathbf{C})=\mathbf{B}(\mathbf{A} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B}) \\
& \vec{\nabla} \times(\vec{\nabla} \times \mathbf{E})=\vec{\nabla}(\vec{\nabla} \cdot \mathbf{E})-(\vec{\nabla} \cdot \vec{\nabla}) \mathbf{E}=-\vec{\nabla}^{2} \mathbf{E} \\
& \vec{\nabla}^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} \mathbf{P}}{\partial t^{2}} \quad \text { "Inhomogeneous Wave Equation" }
\end{aligned}
$$

Maxwell's Equations in a Medium

- The induced polarization, \mathbf{P}, contains the effect of the medium:

$$
\vec{\nabla}^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} \mathbf{P}}{\partial t^{2}}
$$

- Sinusoidal waves of all frequencies are solutions to the wave equation
- The polarization (\mathbf{P}) can be thought of as the driving term for the solution to this equation, so the polarization determines which frequencies will occur.
- For linear response, \mathbf{P} will oscillate at the same frequency as the input.

$$
\mathbf{P}(\mathbf{E})=\varepsilon_{0} \chi \mathbf{E}
$$

- In nonlinear optics, the induced polarization is more complicated:

$$
\mathbf{P}(\mathbf{E})=\varepsilon_{0}\left(\chi^{(1)} \mathbf{E}+\chi^{(2)} \mathbf{E}^{2}+\chi^{(3)} \mathbf{E}^{3}+\ldots\right)
$$

- The extra nonlinear terms can lead to new frequencies.

Solving the wave equation: linear induced polarization

For low irradiances, the polarization is proportional to the incident field:

$$
\mathbf{P}(\mathbf{E})=\varepsilon_{0} \chi \mathbf{E}, \quad \mathbf{D}=\varepsilon_{0} \mathbf{E}+\mathbf{P}=\varepsilon_{0}(1+\chi) \mathbf{E}=\varepsilon \mathbf{E}=n^{2} \mathbf{E}
$$

In this simple (and most common) case, the wave equation becomes:
$\vec{\nabla}^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=\frac{1}{c^{2}} \chi \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}$
Using: $\quad \varepsilon_{0} \mu_{0}=1 / c^{2}$

The electric field is a vector function in 3D, so this is actually 3 equations:

$$
\begin{aligned}
\rightarrow & \vec{\nabla}^{2} \mathbf{E}-\frac{n^{2}}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=0 \\
& \varepsilon_{0}(1+\chi)=\varepsilon=n^{2} \\
& \vec{\nabla}^{2} E_{x}(\mathbf{r}, t)-\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} E_{x}(\mathbf{r}, t)=0
\end{aligned}
$$

$$
\vec{\nabla}^{2} E_{y}(\mathbf{r}, t)-\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} E_{y}(\mathbf{r}, t)=0
$$

$$
\vec{\nabla}^{2} E_{z}(\mathbf{r}, t)-\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} E_{z}(\mathbf{r}, t)=0
$$

Plane wave solutions for the wave equation

If we assume the solution has no dependence on x or y :

$$
\begin{aligned}
& \vec{\nabla}^{2} \mathbf{E}(z, t)=\frac{\partial^{2}}{\partial x^{2}} \mathbf{E}(z, t)+\frac{\partial^{2}}{\partial y^{2}} \mathbf{E}(z, t)+\frac{\partial^{2}}{\partial z^{2}} \mathbf{E}(z, t)=\frac{\partial^{2}}{\partial z^{2}} \mathbf{E}(z, t) \\
& \rightarrow \frac{\partial^{2} \mathbf{E}}{\partial z^{2}}-\frac{n^{2}}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=0
\end{aligned}
$$

The solutions are oscillating functions, for example

$$
\mathbf{E}(z, t)=\hat{\mathbf{x}} E_{x} \cos \left(k_{z} z-\omega t\right)
$$

Where $\omega=k c, \quad k=2 \pi n / \lambda, \quad v_{p h}=c / n$
This is a linearly polarized wave.

Complex notation for waves

- Write cosine in terms of exponential

$$
\mathbf{E}(z, t)=\hat{\mathbf{x}} E_{x} \cos (k z-\omega t+\phi)=\hat{\mathbf{x}} E_{x} \frac{1}{2}\left(e^{i(k z-\omega t+\phi)}+e^{-i(k z-\omega t+\phi)}\right)
$$

- Note E-field is a real quantity.
- It is convenient to work with just one part
- We will use $E_{0} e^{+i(k z-\omega t)} \quad E_{0}=\frac{1}{2} E_{x} e^{i \phi}$
- Svelto: $\quad e^{-i(k z-\omega t)}$
- Then take the real part.
- No factor of 2
- In nonlinear optics, we have to explicitly include conjugate term

Example: linear resonator (1D)

- Boundary conditions: conducting ends (mirrors)

$$
E_{x}(z=0, t)=0 \quad E_{x}\left(z=L_{z}, t\right)=0
$$

- Field is a superposition of +'ve and -'ve waves:

$$
E_{x}(z, t)=A_{+} e^{i\left(k_{z} z-\omega t+\phi_{+}\right)}+A_{-} e^{i\left(-k_{z} z-\omega t+\phi_{-}\right)}
$$

- Absorb phase into complex amplitude

$$
\begin{aligned}
& E_{x}(z, t)=\left(A_{+} e^{+i k_{z} z}+A_{-} e^{-i k_{z} z}\right) e^{-i \omega t} \\
& - \text { Apply b.c. at z }=0 \\
& E_{x}(0, t)=0=\left(A_{+}+A_{-}\right) e^{-i \omega t} \rightarrow A_{+}=-A_{-} \\
& E_{x}(z, t)=A \sin k_{z} z e^{-i \omega t}
\end{aligned}
$$

Quantization of frequency: longitudinal modes

- Apply b.c. at far end
$E_{x}\left(L_{z}, t\right)=0=A \sin k_{z} L_{z} e^{-i \omega t} \quad \rightarrow k_{z} L_{z}=l \pi \quad l=1,2,3, \cdots$
- Relate to wavelength:

$$
k_{z}=\frac{2 \pi}{\lambda}=\frac{l \pi}{L_{z}} \rightarrow L_{z}=l \frac{\lambda}{2} \quad \begin{aligned}
& \text { Integer number of } \\
& \text { half-wavelengths }
\end{aligned}
$$

- Relate to allowed frequencies:

$$
\frac{\omega_{l}}{c}=\frac{l \pi}{L_{z}} \rightarrow v_{l}=l \frac{c}{2 L_{z}}
$$

- Equally spaced frequencies:

$$
\Delta \nu=\frac{c}{2 L_{z}}=\frac{1}{T_{R T}}
$$

Frequency spacing
= 1 / round trip time

Wave energy and intensity

- Both E and H fields have a corresponding energy density $\left(\mathrm{J} / \mathrm{m}^{3}\right)$
- For static fields (e.g. in) the energy density can be calculated through the work done to set up the field

$$
\rho=\frac{1}{2} \varepsilon E^{2}+\frac{1}{2} \mu H^{2}
$$

- Some work is required to polarize the medium
- Energy is contained in both fields, but H field can be calculated from E field

Calculating H from E in a plane wave

- Assume a non-magnetic medium

$$
\mathbf{E}(z, t)=\hat{\mathbf{x}} E_{x} \cos (k z-\omega t)
$$

$$
\vec{\nabla} \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}=-\mu_{0} \frac{\partial \mathbf{H}}{\partial t}
$$

- Can see \mathbf{H} is perpendicular to \mathbf{E}
$-\mu_{0} \frac{\partial \mathbf{H}}{\partial t}=\vec{\nabla} \times \mathbf{E}=\left|\begin{array}{ccc}\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \partial_{x} & \partial_{y} & \partial_{z} \\ E_{x} & 0 & 0\end{array}\right|=\hat{\mathbf{y}} \partial_{z} E_{x}=-\hat{\mathbf{y}} k_{z} E_{0} \sin \left(k_{z} z-\omega t\right)$
- Integrate to get H-field:

$$
\mathbf{H}=\hat{\mathbf{y}} \int \frac{k_{z} E_{0}}{\mu_{0}} \sin \left(k_{z} z-\omega t\right) d t=\hat{\mathbf{y}} \frac{k_{z} E_{0}}{\mu_{0}}\left(\frac{-\cos \left(k_{z} z-\omega t\right)}{-\omega}\right)
$$

H field from E field

- H field for a propagating wave is in phase with E-field

$$
\begin{aligned}
\mathbf{H} & =\hat{\mathbf{y}} H_{0} \cos \left(k_{z} z-\omega t\right) \\
& =\hat{\mathbf{y}} \frac{k_{z}}{\omega \mu_{0}} E_{0} \cos \left(k_{z} z-\omega t\right)
\end{aligned}
$$

- Amplitudes are not independent

$$
\begin{aligned}
& H_{0}=\frac{k_{z}}{\omega \mu_{0}} E_{0} \quad k_{z}=n \frac{\omega}{c} \quad c^{2}=\frac{1}{\mu_{0} \varepsilon_{0}} \rightarrow \frac{1}{\mu_{0} c}=\varepsilon_{0} c \\
& H_{0}=\frac{n}{c \mu_{0}} E_{0}=n \varepsilon_{0} c E_{0}
\end{aligned}
$$

Energy density in an EM wave

- Back to energy density, non-magnetic

$$
\begin{array}{ll}
\rho=\frac{1}{2} \varepsilon E^{2}+\frac{1}{2} \mu_{0} H^{2} & H=n \varepsilon_{0} c E \\
\rho=\frac{1}{2} \varepsilon_{0} n^{2} E^{2}+\frac{1}{2} \mu_{0} n^{2} \varepsilon_{0}^{2} c^{2} E^{2} & \varepsilon=\varepsilon_{0} n^{2} \\
\mu_{0} \varepsilon_{0} c^{2}=1 \\
\rho=\varepsilon_{0} n^{2} E^{2}=\varepsilon_{0} n^{2} E^{2} \cos ^{2}\left(k_{z} z-\omega t\right)
\end{array}
$$

Equal energy in both components of wave

Cycle-averaged energy density

- Optical oscillations are faster than detectors
- Average over one cycle:

$$
\langle\rho\rangle=\varepsilon_{0} n^{2} E_{0}^{2} \frac{1}{T} \int_{0}^{T} \cos ^{2}\left(k_{z} z-\omega t\right) d t
$$

- Graphically, we can see this should $=1 / 2$

- Regardless of position z

$$
\langle\rho\rangle=\frac{1}{2} \varepsilon_{0} n^{2} E_{0}^{2}
$$

Intensity and the Poynting vector

- Intensity is an energy flux ($\mathrm{J} / \mathrm{s} / \mathrm{cm}^{2}$)
- In EM the Poynting vector give energy flux $\mathbf{S}=\mathbf{E} \times \mathbf{H}$
- For our plane wave,
$\mathbf{S}=\mathbf{E} \times \mathbf{H}=E_{0} \cos \left(k_{z} z-\omega t\right) n \varepsilon_{0} c E_{0} \cos \left(k_{z} z-\omega t\right) \hat{\mathbf{x}} \times \hat{\mathbf{y}}$
$\mathbf{S}=n \varepsilon_{0} c E_{0}^{2} \cos ^{2}\left(k_{z} z-\omega t\right) \hat{\mathbf{z}}$
$-\mathbf{S}$ is along \mathbf{k}
- Time average: $\mathbf{S}=\frac{1}{2} n \varepsilon_{0} c E_{0}^{2} \hat{\mathbf{z}}$
- Intensity is the magnitude of \mathbf{S}

$$
I=\frac{1}{2} n \varepsilon_{0} c E_{0}^{2}=\frac{c}{n} \rho=V_{\text {phase }} \cdot \rho \quad \text { Photon flux: } F=\frac{I}{h v}
$$

General plane wave solution

- Assume separable function

$$
\begin{aligned}
& \mathbf{E}(x, y, z, t) \sim f_{1}(x) f_{2}(y) f_{3}(z) g(t) \\
& \vec{\nabla}^{2} \mathbf{E}(z, t)=\frac{\partial^{2}}{\partial x^{2}} \mathbf{E}(z, t)+\frac{\partial^{2}}{\partial y^{2}} \mathbf{E}(z, t)+\frac{\partial^{2}}{\partial z^{2}} \mathbf{E}(z, t)=\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}(z, t)
\end{aligned}
$$

- Solution takes the form:

$$
\begin{aligned}
& \mathbf{E}(x, y, z, t)=\mathbf{E}_{0} e^{i k_{x} x} e^{i k_{y} y} e^{i k_{z} z} e^{-i \omega t}=\mathbf{E}_{0} e^{i\left(k_{x} x+k_{y} y+k_{z} z\right)} e^{-i \omega t} \\
& \mathbf{E}(x, y, z, t)=\mathbf{E}_{0} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}
\end{aligned}
$$

- Now k-vector can point in arbitrary direction

