


Simple scalar wave equation
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2" order PDE SV - V(=0

« Assume separable solution w(z.0=f(z)g(¢)
I
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— Each part is equal to a constant A

0’ 11 9 _
f(z) 0z* H2)=4, c’ g(t) ot’ g(t) =4
1

f(z)zcos(kz)%—k = A, g(t)zcos(a)t)%—w ?zA

=+ : :
w=tkc Sin( ) also works as a second solution



Full solution of wave equation

* Full solution is a linear combination of both
w(z,t)=f(z)g(t)=(4 coskz+ 4, sinkz)( B, coswt + B, sinwt)
 Too messy: use complex solution instead:
w(z.0)=f(z)g(t)=(4e™ + 4,7 )(Be™ + Be™)
w(z,)= AB" ™ + A B e 4+ 4B ) 1+ 4 B
— Constants are arbitrary: rewrite

Yy(z,t)= 4 cos(kz+a)t+¢l)+ A, cos(kz—a)t+¢2)



Interpretation of solutions

_2r
2

 \Wave vector k
« Angular frequency =27V

 Wave total phase: @o=iz-wr+¢
— “absolute phase”. ¢

— Phase velocity: ¢ (I):kz—kct+¢:k(z_ct)+¢
®d = constant when z = ¢t

V(z,t)= Alcos(kz+a)t+¢1)+ A cos(kz—a)t+¢2)

Reverse (to -z) Forward (to +z)



Maxwell's Equations to wave egn

« The induced polarization, P, contains the effect of the medium:

V-E=0 VxE_—a—B
ot
~ 1 OE oP
V:-B=0 V><B——— o
c* ot Ho ot
Take the curl:
- = d = o 1 dE oP
VX(VXE|=——VXB=— + U, —
(VxE)=—3 at(cz or arj

Use the vector ID:
Ax(BxC)=B(A-C)-C(AB)

—

?x(VxE\ ~V(V-E —(V?)E:—VZE

“Inhomogeneous Wave Equation”




Maxwell's Equations in a Medium

* The induced polarization, P, contains the effect of the medium:

 Sinusoidal waves of all frequencies are solutions to the wave equation

* The polarization (P) can be thought of as the driving term for the
solution to this equation, so the polarization determines which
frequencies will occur.

* For linear response, P will oscillate at the same frequency as the input.
P(E)=¢,xE

* In nonlinear optics, the induced polarization is more complicated:
P(E)=¢,(x"E+y"E + "B +..)

* The extra nonlinear terms can lead to new frequencies.



Solving the wave equation:
linear induced polarization

For low irradiances, the polarization is proportional to the incident field:
P(E)=¢xE, D=¢gE+P=¢,(l+y)E=¢E=nE

In this simple (and most common) case, the wave equation becomes:

. 10°E 1 0°E _ n* 0°E

V’E - = —VE-——=0
¢t ot A ot? ¢’ ot

Using: g i, =1/¢’ g, (1+x) =e=n’

The electric field is a vector )
function in 3D, so this is VE (r t)_n_a_E (r.f)=0
actually 3 equations: YA ’



Plane wave solutions for the wave equation

If we assume the solution has no dependence on x or y:

VE(z0) =L B(20) ¢ L () 2B (z0) =L B (=.0)

0x 0y 0z 0z
PE_ W PE _
dz° ¢ ot

The solutions are oscillating functions, for example
E(z,t)=XE, cos(k z—ot)
Where w=kc, k=27mn/A, v =c/n

This is a linearly polarized wave.



Complex notation for waves

* Write cosine in terms of exponential

E(Z,t) = )A(Ex Cos(kz — 0t + (p) — ’A(Ex %(ei(kz—a)t#f’) n e—i(kz—a)t+¢))

— Note E-field is a real quantity.

— It Is convenient to work with just one part
. We will use E,e™“™®)  E =1E ¢"
» Svelto: g~ (ko)

— Then take the real part.
* No factor of 2

* In nonlinear optics, we have to explicitly include
conjugate term



Example: linear resonator (1D)

* Boundary conditions: conducting ends (mirrors)
E (z=0,)=0 E (z=L.t)=0

* Field is a superposition of +'ve and —'ve waves:
E (Z t):A ei(kzz—a)t+¢+)+A ei(—kzz—a)H—(P_)

— Absort; phase into complex amplitude
Ex (Z,f) _ (A+e+ikzz _l_A_e—ikZz)e—ia)t

— Apply b.c.atz=0

E (0,/))=0=(A,+A )e™ > A =-A

E (z,t)=Asink_ze™



Quantization of frequency: longitudinal
modes
* Apply b.c. at far end

E(L.t)=0=Asink, L ¢ kL =In 1=1.2.3.--
— Relate to wavelength:

2r Inm A
k="—="—o5L =1~ Integer number of

Y R § ) half-wavelengths

<

— Relate to allowed frequencies:

®w Ir C
L= sy =]—
c L, 2L,
— Equally spaced frequencies:
AV = < — 1 Frequency spacing

2L, Ty, = 1/ round trip time



Wave energy and intensity

« Both E and H fields have a
corresponding energy density (J/m?) .

— For static fields (e.g. in ) the
energy density can be calculated
through the work done to set up the field | 2]

3

BIOeL:

p=3eE" +TuH’
— Some work is required to polarize the
medium
— Energy is contained in both fields, but H
field can be calculated from E field



Calculating H from E in a plane wave

* Assume a non-magnetic medium
E(z,t)=XE,_ cos(kz—wt)

oB oH
VXE=——=—u —
: ot L_LO ot _
— Can see H is perpendicular to E
—,uoaa—l;lzﬁxE: d. By J =y0_E =-Vk E, sm(kz a)t)
E 0 0

— Integrate to get H-field:

H:y_[kuE sm(kz a)t)dt ykLEO[—cos(kZ;—a)t)j
0 0 B




H field from E field

* H field for a propagating wave is in phase
W|th E'ﬂeld Electromagnetic Wave

<— Magnetic Field (B)

Electric —
Field (E)

: ':"’ Propagation

H=yH cos(kzz — (ot)

k
=y—E, cos(kzz—a)t) < paga
CO‘UO Wavelength (A) s Durectl\oz

e, o

Figure 1

 Amplitudes are not independent

HO = = EO k =nNn— C = > — SOC
w:u() i C au()g() ‘L[OC
— n —
H =——E =neck,

cl,



Energy density in an EM wave

* Back to energy density, non-magnetic

p=%8E2+%‘LLOH2 H = necE
g=gn’
p=ten’E*+Lun’e’c’E’

uec’ =1
p=¢gn’E*=¢gn’E’ cos’ (kzz — a)t)

Equal energy in both components of wave



Cycle-averaged energy density

* Optical oscillations are faster than detectors
* Average over one cycle:
1 e7
(p)=¢g,n’E,’ = JO cos’ (kzz — a)t)dt
— Graphically, we can see this should = 72
kz=0
kz=1m/4

— Regardless of position z (p)=—en’E




Intensity and the Poynting vector

* Intensity is an energy flux (J/s/cm?)
* In EM the Poynting vector give energy flux
S=ExH

— For our plane wave,
S=ExXH=EFE, cos(kzz — a)t)neocEO cos(kzz — wt)& Xy

S = ne,cE, cos’ (kzz — a)t)i

— Sis along k

e Time av

erage: S=1ing,cE,zZ

* Intensity is the magnitude of S

1
[ =—ng,c
2

C
E(? :;p:Vphase p

Photon flux:

F=—




General plane wave solution

« Assume separable function
E(x.y.2.0~ £(x) £ (») £(2)g(¢)

. 82 a2 82 2 82
VzE(Z,t) = @E(z,t)+ 3, E(Z,t)+ QE(Z,Z‘) = %?E(z,t)

» Solution takes the form:
E(x,y,7,t) = Eoeikxxeikyyeikzze—iwt _ Eoei(kxx+kyy+kzz)e_iwt

E(x,y,2.1) = Eoei(k-r—wt)

* Now k-vector can point in arbitrary
direction



