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In (1), dp/dt = 0. The partial derivative means keeping x fixed. Thus if x
is kept fixed, p doesn’t change with ¢. By integrating, p is a constant for each
fixed x. However, for different x’s different constants could result. The
arbitrary constant now depends on x in an arbitrary way. Hence the constant
is an arbitrary function of x. In general arbitrary constants of integration
become arbitrary functions when the integration is of a partial derivative.
Thus :
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is the general solution of dp/dt = 0, where c,(x) is an arbitrary function of x.
As a check, p = co(x) is substituted into the partial differential equation,
dp/dt = 0, in which case we quickly can verify that p = c,(x) is the solution.
To determine the arbitrary function, one initial condition is needed (corre-
-sponding to the one initial condition for the ordinary differential equation).
The initial condition is the initial value of p(x, ¢), the initial traffic density
p(x, 0). Can the partial differential equation be solved for any given initial
condition, that is for p(x, 0) being prescribed, p(x, 0) = f(x)? Equivalently,
can the arbitrary function, p(x, f) = co(x), be determined such that initially
P(x,0) = f(x)? In this case it is quite simple as co(x) = f (x). Thus
p(x, 1) = f(x)
solves the partial differential equation and simultaneously satisfies the initial
condition.
We now consider example (2),

m.w% = —p + 2¢'.
Again we will satisfy the initial condition p(x,0) = f(x). The partial
differential equation can again be integrated yielding (for each fixed x)
p=cef -4 ¢é. |
As before, the constant can depend on x in an arbitrary way. Hence
plx, t) = c;(x)e™* + €.

The initial condition is satisfied if f(x) = ¢,(x) + 1, and hence the solution
of problem (2) satisfying the given initial condition is

px, 1) =[f(x) — 1]e”* + ¢
For example (3),
d
=
keeping x fixed (as implied by d/d¢) yields the solution of the ordinary
differential equation,

E = Qule~.
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For other values of x the constant may vary, and hence the solution of the
partial differential equation is

p(x, 1) = cy(x)e™".
The initial condition, p(x, 0) = f(x), is satisfied if c;(x) = f(x), yielding the
solution of the initial value problem,

plx, ) = f(x)e™".
In summary we have been able to solve partial differential equations in the
case in which they can be integrated. The arbitrary constants that appear are
replaced by arbitrary functions of the “other” independent variable.

EXERCISES

65.1. Determine the solution of dp/d¢ = (sin x)p which satisfies p(x, 0) = cos x.

65.2. Determine the solution of dp/d¢ = p? which satisfies p(x, 0) = sin x.

65.3. Determine the solution of dp/dt = p, which satisfies p(x, ) = 1 + sin x
along x = —2¢,

65.4. Is there a solution of dp/dt = —x?p, such that both p(x,0) = cos x for
x> 0and p(0,t) =costfort> 0?

65.5. Determine the solution of dp/d¢ = xtp which satisfies p(x, 0) = f(x).

66. Linearization

The partial differential equation which was formulated to mathematically
model traffic flow is

dp , 0
9 T MMQ:AEV =0 (66.1a)
or equivalently
dp , dqdp i
R Y Paaie (66.1b)

One possible initial condition is to prescribe the initial traffic density

p(x, 0) = f(x).
We will solve this problem, that is determine the traffic density at all future
times.
This partial differential equation cannot be directly integrated as could
the simple examples in the previous section, since both dp/dt and dp/dx
appear in the equation. Although we will be able to solve this partial differ-




