MATH-332: Linear Algebra

Applications of Linear Systems

Section 1.8: Introduction to Linear Transformations

	Lecture: Introduction to Linear Transformations
	Matrix Transformations
Topics:	Linear Transformations one to one; onto - From 1.9 page 87 Geometric Linear Transformsions of \mathbb{R}^{2} - From 1.9 page 85-87 Problems: Prac: $1-3$ Prob: $17,19,25,31$

This is another progressive section of Lay's textbook. Often one would postpone/dis-include thinking about $\mathbf{A x}=\mathbf{b}$ as a function on the vector \mathbf{x} that takes \mathbf{x} to \mathbf{b}. However, it seems as if the author is a believer of the old idiom, 'in for a penny, in for a pound.' That is, if we have already inundated ourselves with so much language, then what's a little more? What we learn here is to recontextualize our previous understanding of linear systems in terms of mappings of vector-variables between spaces. This concept is handy when trying to think about how a matrix acts on a vector both geometrically and algebraically and when this action can be undone.

Section Goals

- Understand how $\mathbf{A x}=\mathbf{b}$ can be thought of as a linear function $\mathbf{A}: \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$ and how this mapping is related to the solubility of the linear system.
- Characterize mappings in terms of the sets which they map from and to. Relate these ideas to the linear mappings defined by matrix equations.

Section Objectives

- Define transformations and their associated language. That is, define linear transformation, domain, co-domain, range, one-to-one, onto.
- Consider explicit examples of linear transformations on \mathbb{R}^{2} and highlight geometric properties of these transformations.

