MATH-332: Linear Algebra

Applications of Linear Systems

Section 1.8: Introduction to Linear Transformations

pgs. 73-82

	Lecture: Introduction to Linear Transformations
Topics:	Matrix Transformations
	Linear Transformations
	Domain, Co-domain, Range
	one to one; onto - From 1.9 page 87
	Geometric Linear Transformsions of \mathbb{R}^2 - From 1.9 page 85-87
Problems:	Prac: 1-3
	Prob: 17, 19, 25, 31

This is another progressive section of Lay's textbook. Often one would postpone/dis-include thinking about $\mathbf{A}\mathbf{x} = \mathbf{b}$ as a function on the vector \mathbf{x} that takes \mathbf{x} to \mathbf{b} . However, it seems as if the author is a believer of the old idiom, 'in for a penny, in for a pound.' That is, if we have already inundated ourselves with so much language, then what's a little more? What we learn here is to recontextualize our previous understanding of linear systems in terms of mappings of vector-variables between spaces. This concept is handy when trying to think about how a matrix *acts* on a vector both geometrically and algebraically and when this *action* can be undone.

Section Goals

- Understand how $\mathbf{A}\mathbf{x} = \mathbf{b}$ can be thought of as a linear function $\mathbf{A} : \mathbf{R}^m \to \mathbf{R}^n$ and how this mapping is related to the solubility of the linear system.
- Characterize mappings in terms of the sets which they map from and to. Relate these ideas to the linear mappings defined by matrix equations.

Section Objectives

- Define transformations and their associated language. That is, define linear transformation, domain, co-domain, range, one-to-one, onto.
- Consider explicit examples of linear transformations on \mathbb{R}^2 and highlight geometric properties of these transformations.

Chapter: 01

June 22. 2009