1. In class, we proved the Triangle Inequality using an observation regarding absolute value. This time, however, we are going to take the long way to the proof. Using cases, prove

$$
\text { For all real numbers } x \text { and } y,|x+y| \leq|x|+|y|
$$

2. Define A as the average of the n numbers, $x_{1}, x_{2}, \ldots, x_{n}$. Prove that at least one of the x_{1}, \ldots, x_{n} is greater than or equal to A.
3. Let a and b be integers with $a \neq 0$. If a does not divide b, then the equation $a x^{3}+b x+(b+a)=0$ does not have a solution that is a natural number.
(Hint: It may be necessary to factor a sum of cubes. Recall that $u^{3}+v^{3}=(u+v)\left(u^{2}-u v+v^{2}\right)$.
4. Prove the following proposition

For all sets A, B, and C that are subsets of some universal set, if

$$
A \cap B=A \cap C \text { and } A^{c} \cap B=A^{c} \cap C, \text { then } B=C
$$

