ticc.mines.edu/csm/wiki/ Go to Plygica \rightarrow Summer 2010 EзM.

Maxwellis Eques

$$
\begin{aligned}
\vec{v}_{1}=v_{2} \Rightarrow v_{1 x} & =v_{2 x} \\
v_{y y} & =v_{2 y} \\
v_{1 z} & =v_{2 z}
\end{aligned}
$$

(1) $\vec{\nabla} \cdot \overline{\vec{E}}=\frac{\rho}{e_{0}} \rightarrow \frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{z}}{\partial z}=\frac{\rho}{\epsilon_{0}}$
(1) $\vec{\nabla} \cdot \vec{B}=\phi \rightarrow \frac{\partial B_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}+\frac{\partial B_{z}}{\partial z}=\phi$
(3) $\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$ (Faraday's Law)
(4) $\vec{\nabla} \times \vec{B}=\mu_{0} t_{0} \frac{\partial \vec{E}}{\partial t}+\mu_{0} \vec{J}$ (Moditied Ampese's 2mu)

(1) $\int \vec{\nabla} \cdot \vec{E} d v=\frac{1}{\epsilon_{0}} \int \rho d v$
$\phi^{\prime} \vec{E} \cdot d \vec{a}=\frac{1}{\epsilon_{0}}$ genc
(2) $\int \vec{\nabla} \cdot \vec{B} d V=\varnothing \rightarrow \oint \vec{B} \cdot d \vec{a}=\varnothing$
(3) $\int \vec{\nabla} \times \vec{E} \cdot d \vec{a}=\int-\frac{d \vec{b}}{\partial t} \cdot d \vec{a}$

$$
\int \vec{E} \cdot d \vec{l}=-\frac{\partial}{\partial t} \int \vec{B} \cdot d \vec{a}
$$

(4) $\int \vec{\nabla} \times \vec{B} \cdot d \vec{a}=\int \mu_{0} \epsilon_{0} \frac{\partial \vec{E}}{\partial t} \cdot d \vec{a}+\int \mu_{0} \vec{J} \cdot d \vec{a}$

$$
\oint \vec{B} \cdot d \vec{l}=\mu_{0} \sigma_{0} \frac{\partial}{\partial t} \int \vec{E} \cdot d \vec{a}+\mu_{0} I_{a n c}
$$

Maxwell's equations in matter
Bound charge and bound current.

$$
\begin{array}{ll}
-\vec{\nabla} \cdot \vec{P}=\rho_{b} & \vec{\nabla} \times \vec{r}=\vec{J}_{b} \\
\vec{D} \equiv \epsilon_{0} \vec{E}+\vec{P} & \vec{H}=\frac{1}{\mu_{0}} \vec{B}-\vec{M}
\end{array}
$$

In a linear material

$$
\begin{array}{ll}
\vec{p} \propto \vec{E} \rightarrow \vec{p}=\epsilon_{0} x_{e} \vec{E} ; & \vec{M}=x_{m} \vec{H} \\
\vec{D}=\epsilon \vec{E} & \vec{A}=\frac{1}{\mu} \vec{B} \\
\vec{D}=\epsilon_{r} \epsilon_{0} \vec{E} & \vec{H}=\frac{1}{\mu_{0} \mu_{0}} \vec{B}
\end{array}
$$

n (index of refraction)

$$
=\sqrt{G_{r}}
$$

$$
\begin{aligned}
& \xrightarrow[\text { material 2 } \uparrow \overrightarrow{E_{2,2}}]{\text { matenal) } \xrightarrow[\vec{E}_{2,11}]{\longrightarrow}} \underset{\vec{E}_{1,2}}{\overrightarrow{E_{1,1}}} \uparrow \vec{B}_{2,2} \xrightarrow[\vec{B}_{2,11}]{\overrightarrow{B_{1,11}}}
\end{aligned}
$$

$$
\begin{aligned}
& \int \vec{E} \cdot d \vec{a}=\frac{1}{\epsilon_{0}} \int \rho d V
\end{aligned}
$$

$$
\begin{aligned}
& E_{1,1} \phi-E_{2,1} \phi=\frac{1}{\epsilon_{0}} \int \sigma d a \\
& =\frac{\sigma}{\epsilon_{0}} \text { 仡 } \\
& E_{1,2}-E_{21}=\frac{\sigma}{\epsilon_{0}} \\
& D_{1,2}-D_{2,2}=\frac{\sigma_{\text {grae }}}{\epsilon_{0}}
\end{aligned}
$$

Linear materials without free chargg.

$$
E_{1,} E_{1,2}-\epsilon_{2} E_{2,1}=\varnothing
$$

Summary of BCS
Linear materials:

$$
\begin{array}{ll}
\text { materials: } \\
E_{1} E_{12}-\epsilon_{2} E_{21}=\phi, & E_{1}^{\prime \prime}-E_{2}^{\prime \prime}=\varnothing \\
B_{12}-B_{21}=\phi & \frac{1}{\mu_{1}} B_{1}^{\prime \prime}-\frac{1}{\mu_{2}} B_{2}^{\prime \prime}=\varnothing
\end{array}
$$

