
MATH 348 - Advanced Engineering Mathematics November 30, 2009
Homework 10, Fall 2009 Due:December 9th, 2009

Partial Differential Equations - Heat and Wave Equations

Consider the one-dimensional heat equation,

∂u

∂t
= c2

∂2u

∂x2
, (1)

x ∈ (0, L) , t ∈ (0,∞) , c2 =
K

σρ
. (2)

Equations (1)-(2) model the time-evolution of the temperature, u = u(x, t), of a heat conducting medium in one-dimension. The
object, of length L, is assumed to have a homogeneous thermal conductivity K, specific heat σ, and linear density ρ. That is,
K,σ, ρ ∈ R+.

1. Consider the one-dimensional heat equation, (1)-(2), with the boundary conditions1,

ux(0, t) = 0, ux(L, t) = 0, (3)

u(x, 0) = f(x). (4)

(a) Assume that the solution to (1)-(2) is such that u(x, t) = F (x)G(t) and use separation of variables to find the general
solution to (1)-(2), which satisfies (3)-(4). 2

(b) Describe how the long term behavior of the general solution to (1)-(4) changes as the thermal conductivity, K, is
increased while all other parameters are held constant. Also, describe how the solution changes when the linear
density, ρ, is increased while all other parameters are held constant.

Define,

f(x) =


2k
L
x, 0 < x ≤ L

2

2k
L (L− x), L

2 < x < L

(5)

and for the following questions we consider the solution, u, to the heat equation given by, (1)-(2), which satisfies the
initial condition given by (5). 3

(c) For L = 1 and k = 1, find the particular solution to (1)-(2) with boundary conditions (3)-(4) for when the initial
temperature profile of the medium is given by (5). Show that lim

t→∞
u(x, t) = favg = 0.5.4

2. Recall the 1-D conservation law encountered during the derivation of the heat equation.5

∂u

∂t
+
∂φ

∂x
= 0 (6)

In general, if the function u = u(x, t) represents the density of a physical quantity then the function φ = φ(x, t) represents
its flux. If we assume the φ is proportional to the negative gradient of u then, from (6), we get the one-dimensional
heat/diffusion equation (1).6

1Here the boundary conditions correspond to perfect insulation of both endpoints
2An insulated bar is discussed in examples 4 and 5 on page 557. The boundary value problem manifesting from this PDE corresponds to problem

two from homework nine.
3When solving the following problems it would be a good idea to go back through your notes and the homework looking for similar calculations.
4It is interesting here to note that though the initial condition f doesn’t appear to satisfy the boundary conditions its periodic Fourier extension

does. That is, if you draw the even periodic extension of the initial condition then you would see that the slope is not well defined at the end points.

Remembering that the Fourier series averages the right and left hand limits of the periodic extension of the function f at the endpoints shows that the

boundary conditions are, in fact, satisfied, since the derivative of an average is the average of derivatives.
5When discussing heat transfer this is known as Fourier’s Law of Cooling. In problems of steady-state linear diffusion this would be called Fick’s

First Law. In discussing electromagnetism u could be charge density and φ would be its flux.
6AKA Fick’s Second Law associated with linear non-steady-state diffusion.
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(a) Assume that φ is proportional to u to derive, from (6), the convection/transport equation, ut + cux = 0, where c is
some proportionality constant.

(b) Given the initial condition u(x, 0) = u0(x) for the convection equation, show that u(x, t) = u0(x− ct) is a solution to
this PDE.

(c) If both diffusion and convection are present in the physical system then the flux is given by, φ(x, t) = cu− dux, where
c, d ∈ R+. Derive from, (6), the convection-diffusion equation ut + cux − duxx = 0.

(d) If there is also energy/particle loss proportional to the amount present then we introduce to the convection-diffusion
equation the term λu to get the convection-diffusion-decay equation,7

ut = Duxx − cux − λu. (7)

Show that by assuming, u(x, t) = w(x, t)eαx−βt, (7) can be transformed into a heat equation on the new variable w
where α = c/(2D) and β = λ+ c2/(4D).8

Consider the one-dimensional wave equation,

∂2u

∂t2
= c2

∂2u

∂x2
, (8)

x ∈ (0, L) , t ∈ (0,∞) , c2 =
T

ρ
. (9)

Equations (1)-(2) model the time-evolution of the displacement, u = u(x, t), of an elastic medium in one-dimension. The
object, of length L, is assumed to have a homogenous lateral tension T , and linear density ρ. That is, T, ρ ∈ R+.

3. Consider the one-dimensional wave equation, (8)-(9), with the boundary conditions9,

ux(0, t) = 0, ux(L, t) = 0, (10)

and initial conditions,

u(x, 0) = f(x), (11)

ut(x, 0) = g(x). (12)

(a) Assume that the solution to (8)-(9) is such that u(x, t) = F (x)G(t) and use separation of variables to find the general
solution to (8)-(9), which satisfies (10)-(12). 10 11

(b) Let L = 1 and k = 1 and find the particular solution, which satisfies the initial displacement, f(x), given by (5) and
has zero initial velocity for all points on the object.

4. Show that by direct substitution that the function u(x, t) given by,

u(x, t) =
1
2

[u0(x− ct) + u0(x+ ct)] +
1
2c

∫ x+ct

x−ct
v0(y)dy, (13)

5. Consider the non-homogenous one-dimensional wave equation,

∂2u

∂t2
= c2

∂2u

∂x2
+ F (x, t) , (14)

x ∈ (0, L) , t ∈ (0,∞) , c2 =
T

ρ
. (15)

7The uxx term models diffusion of energy/particles while ux models convection, u models energy/particle loss/decay.
8This shows that the general PDE (7) can be solved using heat equation techniques.
9These boundary conditions imply that the object must have zero curvature at each endpoint.

10It is important to notice that the solution to the spatial portion of the problem is the same as the heat problem of hw5 prob2.
11Remember that in this case we have nontrivial solutions for k0 = 0. You should find that G0(t) = C1 + C2t.
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with boundary conditions and initial conditions,

u(0, t) = u(L, t) = 0, (16)

u(x, 0) = ut(x, 0) = 0. (17)

Letting F (x, t) = A sin(ωt) gives the following Fourier Series Representation of the forcing function F ,

F (x, t) =
∞∑
n=1

fn(t) sin
(nπx
L

)
, (18)

where
fn(t) =

2A
nπ

(1− (−1)n) sin(ωt). (19)

(a) Show that substitution of (18)-(19) into (14) yields the ODE, 12

G′′n +
(cnπ
L

)2

Gn =
2A
nπ

(1− (−1)n) sin(ωt). (20)

(b) The solution to (20) is given by,
Gn(t) = Ghn(t) +Gpn(t), (21)

where Ghn(t) = Bn cos
(cnπ
L
t
)

+ B∗n sin
(cnπ
L
t
)

is the homogenous solution and Gpn(t) is the particular solution to
(20). 13

i. If ω 6= cnπ/L then what would the choice for Gpn(t) be, assuming you were solving for Gpn(t) using the method of
undetermined coefficients? do not solve for these coefficients14

ii. If ω = cnπ/L then what would the choice for Gpn(t) be, assuming you were solving for Gpn(t) using the method of
undetermined coefficients? do not solve for these coefficients 15

iii. For the latter case what is lim
t→∞

u(x, t) and what does this limit imply physically?16

12I think the key point here is to notice how the in-homogeneity of the PDE leads to an in-homogeneity in the ODE.
13This could be quickly determined by using problem one from homework nine. What’s important here is that the homogeneous solution provides

oscillations found in the unforced case and the in-homogeneous solution will produce another Fourier sine series, which captures the dynamics induced

by F (x, t).
14No second guessing. The table from problem one on homework nine outlines the choice. Don’t let all the symbols fool you this all that we care

about is the functional form sin(ωt).
15Basically what is being said here is that by tuning the external force to be the natural frequency, associated with the time dynamics, of a single

Fourier modes causes that mode to resonate and dominate the long-term dynamics of the system.
16Now would be a good time to think about problem (1c) on homework 9 and problem four from homework 7. If these problem don’t seem to have

a point then consider chapter four of your differential equations text.
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