Matrix Algebra
Section 2.2: The Inverse of a Matrix

Lecture: The Inverse of a Matrix

	Theorem 4, 5, 6
Topics:	Elementary Matrices
	Finding A^{-1}
Problems	Prac: 1,2

Section Goals

- Understand the definition and properties of a matrix inverse for square data and how this can be used to characterize solutions to $\mathbf{A x}=\mathbf{b}$.
- Devise a method for finding a matrix inverse using elementary row-operations.

Section Objectives

- Define the inverse matrix for square data and its associated special case for $\mathbf{A} \in \mathbb{R}^{2 \times 2}$.
- Prove theorem 5 , which states that for invertible $\mathbf{A} \in \mathbb{R}^{n \times n}$ there exists a unique solution to $\mathbf{A x}=\mathbf{b}$.
- Prove some of the properties of inverse matrices found in theorem 6 highlighting the change from element level proofs to algebraic proofs on the matrices themselves.
- Define elementary matrices in connection to row-operations applied to identity matrices and prove how these matrices can be used to define \mathbf{A}^{-1}, theorem 7 , thus giving an algorithm for finding an inverse matrix - assuming one exists.

