PHGN361 Exam 1: NAME

1. (a) Using the integral form of Gauss's Law, DERIVE the electric field due to an infinite CYLINDER of charge, with radius R and charge density $\rho=A r$ AND a constant surface charge density σ_{0} at $r=R$, where A is a constant. Find the field both inside and outside the cylinder. (b) Prove that your result is consistent with the differential form of Gauss's Law.
Note $\nabla \cdot \vec{v}=\frac{1}{s} \frac{\partial}{\partial s}\left(s v_{s}\right)+\frac{1}{s} \frac{\partial}{\partial \phi}\left(v_{\phi}\right)+\frac{\partial}{\partial z} v_{z}$
2. A sphere of radius R has volume charge density $\rho=\rho_{0} \sin (\theta) \cos (\phi) r / R$. Write an INTEGRAL expression for the electric field on the x-axis a distance $x_{0}>R$ due to this charge distribution.
